Residence time distribution and Peclet number correlation for continuous oscillatory flow reactors

2017 ◽  
Vol 92 (8) ◽  
pp. 2178-2188 ◽  
Author(s):  
Danijela S Slavnić ◽  
Luka V Živković ◽  
Ana V Bjelić ◽  
Branko M Bugarski ◽  
Nikola M Nikačević
Author(s):  
Vincent Bailly-Comte ◽  
Séverin Pistre

AbstractDye tracing is an efficient method for spring watershed delineation, but is also used in surface waters to assess pollution migration over several kilometers. The aim of this study is to develop a simple and parsimonious approach that accounts for a linear relationship between dispersivity and scale that could be used for the simulation of large-scale transport processes in aquifers. The analysis of 583 tracer recoveries is used to validate an inverse relationship between arrival time and peak concentration, which is shown to be a consequence of the linear relationship between dispersivity and scale. These results show that the tracer displacement through a given tracing system can be characterized at a large scale by a constant Peclet number. This interpretation is used to propose a new approach for tracer test design based on the analytical expression of the peak/time factor. It is also used for Peclet number assessment and simulation of the whole tracer residence-time distribution using a new method based on the ratio between the mode of the residence time distribution (hmod) and the corresponding time from injection (tmod), which is called the hmod/tmod method. This methodology is applied to two tracer tests carried out in a karst aquifer over 13 km between the same injection and detection points under distinct hydrological conditions. These results found practical applications in generalizing tracer test results to various flow conditions, or guiding the parameterization of physically-based vulnerability mapping methods.


2014 ◽  
Vol 68 (3) ◽  
pp. 363-379 ◽  
Author(s):  
Danijela Slavnic ◽  
Branko Bugarski ◽  
Nikola Nikacevic

Global market competition, increase in energy and other production costs, demands for high quality products and reduction of waste are forcing pharmaceutical, fine chemicals and biochemical industries, to search for radical solutions. One of the most effective ways to improve the overall production (cost reduction and better control of reactions) is a transition from batch to continuous processes. However, the reactions of interests for the mentioned industry sectors are often slow, thus continuous tubular reactors would be impractically long for flow regimes which provide sufficient heat and mass transfer and narrow residence time distribution. The oscillatory flow reactors (OFR) are newer type of tube reactors which can offer solution by providing continuous operation with approximately plug flow pattern, low shear stress rates and enhanced mass and heat transfer. These benefits are the result of very good mixing in OFR achieved by vortex generation. OFR consists of cylindrical tube containing equally spaced orifice baffles. Fluid oscillations are superimposed on a net (laminar) flow. Eddies are generated when oscillating fluid collides with baffles and passes through orifices. Generation and propagation of vortices create uniform mixing in each reactor cavity (between baffles), providing an overall flow pattern which is close to plug flow. Oscillations can be created by direct action of a piston or a diaphragm on fluid (or alternatively on baffles). This article provides an overview of oscillatory flow reactor technology, its operating principles and basic design and scale - up characteristics. Further, the article reviews the key research findings in heat and mass transfer, shear stress, residence time distribution in OFR, presenting their advantages over the conventional reactors. Finally, relevant process intensification examples from pharmaceutical, polymer and biofuels industries are presented.


RSC Advances ◽  
2012 ◽  
Vol 2 (23) ◽  
pp. 8721 ◽  
Author(s):  
Victor Sans ◽  
Naima Karbass ◽  
M. Isabel Burguete ◽  
Eduardo García-Verdugo ◽  
Santiago V. Luis

Author(s):  
Nesrin Ozalp ◽  
Vidyasagar Shilapuram ◽  
D. Jayakrishna

In this work, we present a thorough reaction engineering analysis on the modeling of a vortex-flow reactor to show that commonly practiced one-plug reactor approach is not sufficient to explain the flow behavior inside the reactor. Our study shows that N-plug flow reactors in series is the best approach in predicting the flow dynamics based on the computational fluid dynamics (CFD) simulations. We have studied the residence time distribution using CFD by two different methods. The residence time distribution characteristics are calculated by approximating the real reactor as N-ideal reactors in series, and then estimated the number of ideal reactors in series for the model. We have validated our CFD model by comparing the simulation results with experimental results. Finally, we have done a parametric study with a different sweeping gas to identify the best screening gas to avoid carbon deposition inside the vortex-flow reactor. Our results have shown that hydrogen is a better screening gas than argon.


Sign in / Sign up

Export Citation Format

Share Document