Enhancing arsenic removal from acidic wastewater using zeolite supported sulfide nanoscale zero‐valent iron: the role of sulfur and copper

Author(s):  
Chundi Zhou ◽  
Caiyun Han ◽  
Xize Min ◽  
Ting Yang
2021 ◽  
Vol 55 (4) ◽  
pp. 2628-2638
Author(s):  
Zhen Cao ◽  
Hao Li ◽  
Gregory V. Lowry ◽  
Xiaoyang Shi ◽  
Xiangcheng Pan ◽  
...  

2015 ◽  
Vol 72 (9) ◽  
pp. 1463-1471 ◽  
Author(s):  
Hui Li ◽  
Yong-sheng Zhao ◽  
Zhan-tao Han ◽  
Mei Hong

The growing use of nanoscale zero-valent iron (NZVI) in the remediation of contaminated groundwater raises concerns regarding its transport in aquifers. Laboratory-scale sand-packed column experiments were conducted with bare and sucrose-modified NZVI (SM-NZVI) to improve our understanding of the transport of the nanoparticles in saturated porous media, as well as the role of media size, suspension injection rate and concentration on the nanoparticle behavior. As the main indicative parameters, the normalized effluent concentration was measured and the deposition rate coefficient (k) was calculated for different simulated conditions. Overall, compared to the high retention of bare NZVI in the saturated silica column, SM-NZVI suspension could travel through the coarse sand column easily. However, the transport of SM-NZVI particles was not very satisfactory in a smaller size granular matrix especially in fine silica sand. Furthermore, the value of k regularly decreased with the increasing injection rate of suspension but increased with suspension concentration, which could reflect the role of these factors in the SM-NZVI travel process. The calculation of k-value at the tests condition adequately described the experimental results from the point of deposition dynamics, which meant the assumption of first-order deposition kinetics for the transport of NZVI particles was reasonable and feasible.


2022 ◽  
Vol 422 ◽  
pp. 126949
Author(s):  
Libin Wu ◽  
Qintie Lin ◽  
Hengyi Fu ◽  
Haoyu Luo ◽  
Quanfa Zhong ◽  
...  

Author(s):  
Shun Cheng ◽  
Hong Liu ◽  
Emmanuella Anang ◽  
Chunxia Li ◽  
Xianyuan Fan

Abstract Nanoscale zero-valent iron (nZVI) and sulfides have been confirmed to be effective in arsenic sequestration from aqueous solution. In this study, attapulgite supported and sulfide-modified nanoscale zero-valent iron (S-nZVI@ATP) are synthesized to realize the superposition effect of enhanced arsenic sequestration. The results indicated that nZVI clusters were well disaggregated and the BET specific surface area increased from 19.61 m2·g−1 to 46.04 m2·g−1 of S-nZVI@ATP, resulting in an enhanced removal efficiency of arsenic from 51.4% to 65.1% at 20 min. The sulfides in S-nZVI@ATP mainly exists as mackinawite (FeS) and causes the spherical nanoparticles exhibiting a larger average particle size (94.6 nm) compared to bare nZVI (66.0 nm). In addition, S-nZVI@ATP exhibited a prominent ability for arsenic sequestration over a wide pH range of 3.0–6.0. The presence of anions SO42− and Cl− can enhance the arsenic removal whereas HCO3− inhibited it. The arsenic adsorption by S-nZVI@ATP could be explained by the pseudo-second-order kinetic model and the Langmuir model, with the maximum adsorption capacity of 193.8 mg·g−1. The mechanism of As(III) sequestration by S-nZVI@ATP involved multiple processes, mainly including precipitation conversion from FeS to As2S3, surface-complexation adsorption and co-precipitation.


2016 ◽  
Vol 565 ◽  
pp. 857-862 ◽  
Author(s):  
Krittanut Chaithawiwat ◽  
Alisa Vangnai ◽  
John M. McEvoy ◽  
Birgit Pruess ◽  
Sita Krajangpan ◽  
...  

Author(s):  
Umma S. Rashid ◽  
Bernhardt Saini-Eidukat ◽  
Achintya N. Bezbaruah

Sign in / Sign up

Export Citation Format

Share Document