In‐situ product recovery as a strategy for bioprocess integration and depletion of inhibitory products

Author(s):  
Ulises A. Salas‐Villalobos ◽  
Rígel V. Gómez‐Acata ◽  
Josefina Castillo‐Reyna ◽  
Oscar Aguilar
2016 ◽  
Vol 220 ◽  
pp. 590-600 ◽  
Author(s):  
Victoria Outram ◽  
Carl-Axel Lalander ◽  
Jonathan G.M. Lee ◽  
E. Timothy Davis ◽  
Adam P. Harvey

Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3356 ◽  
Author(s):  
Francisco Aguilar ◽  
Thomas Scheper ◽  
Sascha Beutel

The sesquiterpene (+)-zizaene is the direct precursor of khusimol, the main fragrant compound of the vetiver essential oil from Chrysopogon zizanioides and used in nearly 20% of men’s fine perfumery. The biotechnological production of such fragrant sesquiterpenes is a promising alternative towards sustainability; nevertheless, product recovery from fermentation is one of the main constraints. In an effort to improve the (+)-zizaene recovery from a metabolically-engineered Escherichia coli, we developed an integrated bioprocess by coupling fermentation and (+)-zizaene recovery using adsorber extractants. Initially, (+)-zizaene volatilization was confirmed from cultivations with no extractants but application of liquid–liquid phase partitioning cultivation (LLPPC) improved (+)-zizaene recovery nearly 4-fold. Furthermore, solid–liquid phase partitioning cultivation (SLPPC) was evaluated by screening polymeric adsorbers, where Diaion HP20 reached the highest recovery. Bioprocess was scaled up to 2 L bioreactors and in situ recovery configurations integrated to fermentation were evaluated. External recovery configuration was performed with an expanded bed adsorption column and improved (+)-zizaene titers 2.5-fold higher than LLPPC. Moreover, internal recovery configuration (IRC) further enhanced the (+)-zizaene titers 2.2-fold, whereas adsorption velocity was determined as critical parameter for recovery efficiency. Consequently, IRC improved the (+)-zizaene titer 8.4-fold and productivity 3-fold from our last report, achieving a (+)-zizaene titer of 211.13 mg L−1 and productivity of 3.2 mg L−1 h−1. This study provides further knowledge for integration of terpene bioprocesses by in situ product recovery, which could be applied for many terpene studies towards the industrialization of fragrant molecules.


2011 ◽  
Vol 16 (3) ◽  
pp. 611-616 ◽  
Author(s):  
Z. Zhou ◽  
Z. Yao ◽  
H. Q. Wang ◽  
H. Xu ◽  
P. Wei ◽  
...  

RSC Advances ◽  
2014 ◽  
Vol 4 (85) ◽  
pp. 45029-45039 ◽  
Author(s):  
Guneet Kaur ◽  
Kathy Elst

Process optimization by integration of bioconversion with product separation and recovery i.e. in situ product recovery (ISPR) is an important means to develop a sustainable and petrochemical-competitive biotechnological method for itaconic acid production.


2014 ◽  
Vol 111 (8) ◽  
pp. 1566-1576 ◽  
Author(s):  
Kristina Meier ◽  
Frederike Carstensen ◽  
Christoph Scheeren ◽  
Lars Regestein ◽  
Matthias Wessling ◽  
...  

2012 ◽  
Vol 421-422 ◽  
pp. 39-50 ◽  
Author(s):  
Frederike Carstensen ◽  
Christian Marx ◽  
João André ◽  
Thomas Melin ◽  
Matthias Wessling

Fermentation ◽  
2018 ◽  
Vol 4 (3) ◽  
pp. 65 ◽  
Author(s):  
Lisa Halka ◽  
Rolf Wichmann

Fusicocca-2,10(14)-diene (FCdiene) is a tricyclic diterpene which has many pharmaceutical applications, for example, it is a precursor for different anticancer drugs, including fusicoccin A. Chemical synthesis of this diterpene is not economical as it requires 14 steps with several stereospecific reactions. FCdiene is naturally produced at low titers in phytopathogenic filamentous fungi. However, production of FCdiene can be achieved via expression of fusicoccadiene synthase in yeast. The objective of this study is to increase FCdiene production by optimizing the yeast fermentation process. Our preliminary fermentations showed influences of carbon sources, buffer agents, and oxygen supply on FCdiene production. Buffer agents as well as oxygen supply were investigated in detail at 0.2 and 1.8 L cultivation volumes. Using glucose as the carbon source, FCdiene concentrations were increased to 240 mgFCdiene/L by optimizing pH and oxygen conditions. In situ extraction and adsorption techniques were examined at the 0.2 L scale to determine if these techniques could improve FCdiene yields. Different adsorbents and solvents were tested with in situ product recovery and 4-fold increases in FCdiene productivity could be shown. The results generated in this work provide a proof-of-concept for the fermentative production of FCdiene from S. cerevisiae as a practical alternative to chemical synthesis.


Sign in / Sign up

Export Citation Format

Share Document