scholarly journals The impact of certain genetic variants (single nucleotide polymorphisms) on incidence and severity of COVID‐19

2021 ◽  
Vol 23 (2) ◽  
Author(s):  
Anis Abobaker ◽  
Taha Nagib ◽  
Ahmed Alsoufi
2015 ◽  
Vol 308 (9) ◽  
pp. C758-C766 ◽  
Author(s):  
Xinjun Cindy Zhu ◽  
Rafiquel Sarker ◽  
John R. Horton ◽  
Molee Chakraborty ◽  
Tian-E Chen ◽  
...  

Genetic determinants appear to play a role in susceptibility to chronic diarrhea, but the genetic abnormalities involved have only been identified in a few conditions. The Na+/H+ exchanger 3 (NHE3) accounts for a large fraction of physiologic intestinal Na+ absorption. It is highly regulated through effects on its intracellular COOH-terminal regulatory domain. The impact of genetic variation in the NHE3 gene, such as single nucleotide polymorphisms (SNPs), on transporter activity remains unexplored. From a total of 458 SNPs identified in the entire NHE3 gene, we identified three nonsynonymous mutations (R474Q, V567M, and R799C), which were all in the protein's intracellular COOH-terminal domain. Here we evaluated whether these SNPs affect NHE3 activity by expressing them in a mammalian cell line that is null for all plasma membrane NHEs. These variants significantly reduced basal NHE3 transporter activity through a reduction in intrinsic NHE3 function in variant R474Q, abnormal trafficking in variant V567M, or defects in both intrinsic NHE3 function and trafficking in variant R799C. In addition, variants NHE3 R474Q and R799C failed to respond to acute dexamethasone stimulation, suggesting cells with these mutant proteins might be defective in NHE3 function during postprandial stimulation and perhaps under stressful conditions. Finally, variant R474Q was shown to exhibit an aberrant interaction with calcineurin B homologous protein (CHP), an NHE3 regulatory protein required for basal NHE3 activity. Taken together, these results demonstrate decreased transport activity in three SNPs of NHE3 and provide mechanistic insight into how these SNPs impact NHE3 function.


2012 ◽  
Vol 40 (5) ◽  
pp. 856-864 ◽  
Author(s):  
Tobias Hartmann ◽  
Mineko Terao ◽  
Enrico Garattini ◽  
Christian Teutloff ◽  
Joshua F. Alfaro ◽  
...  

Biochimie ◽  
2019 ◽  
Vol 163 ◽  
pp. 73-83 ◽  
Author(s):  
Irina V. Alekseeva ◽  
Anastasiia T. Davletgildeeva ◽  
Olga V. Arkova ◽  
Nikita A. Kuznetsov ◽  
Olga S. Fedorova

2010 ◽  
Vol 299 (4) ◽  
pp. F704-F711 ◽  
Author(s):  
Ana M. Pajor ◽  
Nina N. Sun

The sodium-coupled transport of citric acid cycle intermediates in the intestine and kidney is mediated by the Na+-dicarboxylate cotransporter, NaDC1. In the kidney, NaDC1 plays an important role in regulating succinate and citrate concentrations in the urine, which may have physiological consequences including the development of kidney stones. In the present study, the impact of nonsynonymous single nucleotide polymorphisms (SNPs) on NaDC1 expression and function was characterized using the COS-7 cell heterologous expression system. The I550V variant had an increased sensitivity to lithium inhibition although there were no significant effects on protein abundance. The L44F variant had no significant effects on expression or function. The membrane protein abundance of the M45L, V117I, and F254L variants was decreased, with corresponding decreases in transport activity. The A310P variant had decreased protein abundance as well as a change in substrate selectivity. The P385S variant had a large decrease in succinate transport Vmax, as well as altered substrate selectivity, and a change in the protein glycosylation pattern. The most damaging variant was V477M, which had decreased affinity for both succinate and sodium. The V477M variant also exhibited stimulation by lithium, indicating a change in the high-affinity cation binding site. We conclude that most of the naturally occurring nonsynonymous SNPs affect protein processing of NaDC1, and several also affect functional properties. All of these mutations are predicted to decrease transport activity in vivo, which would result in decreased intestinal and renal absorption of citric acid cycle intermediates.


2016 ◽  
Author(s):  
Mark Barash ◽  
Philipp E. Bayer ◽  
Angela van Daal

AbstractDespite intensive research on genetics of the craniofacial morphology using animal models and human craniofacial syndromes, the genetic variation that underpins normal human facial appearance is still largely elusive. Recent development of novel digital methods for capturing the complexity of craniofacial morphology in conjunction with high-throughput genotyping methods, show great promise for unravelling the genetic basis of such a complex trait.As a part of our efforts on detecting genomic variants affecting normal craniofacial appearance, we have implemented a candidate gene approach by selecting 1,201 single nucleotide polymorphisms (SNPs) and 4,732 tag SNPs in over 170 candidate genes and intergenic regions. We used 3-dimentional (3D) facial scans and direct cranial measurements of 587 volunteers to calculate 104 craniofacial phenotypes. Following genotyping by massively parallel sequencing, genetic associations between 2,332 genetic markers and 104 craniofacial phenotypes were tested.An application of a Bonferroni–corrected genome–wide significance threshold produced significant associations between five craniofacial traits and six SNPs. Specifically, associations of nasal width with rs8035124 (15q26.1), cephalic index with rs16830498 (2q23.3), nasal index with rs37369 (5q13.2), transverse nasal prominence angle with rs59037879 (10p11.23) and rs10512572 (17q24.3), and principal component explaining 73.3% of all the craniofacial phenotypes, with rs37369 (5p13.2) and rs390345 (14q31.3) were observed.Due to over-conservative nature of the Bonferroni correction, we also report all the associations that reached the traditional genome-wide p-value threshold (<5.00E-08) as suggestive. Based on the genome-wide threshold, 8 craniofacial phenotypes demonstrated significant associations with 34 intergenic and extragenic SNPs. The majority of associations are novel, except PAX3 and COL11A1 genes, which were previously reported to affect normal craniofacial variation.This study identified the largest number of genetic variants associated with normal variation of craniofacial morphology to date by using a candidate gene approach, including confirmation of the two previously reported genes. These results enhance our understanding of the genetics that determines normal variation in craniofacial morphology and will be of particular value in medical and forensic fields.Author SummaryThere is a remarkable variety of human facial appearances, almost exclusively the result of genetic differences, as exemplified by the striking resemblance of identical twins. However, the genes and specific genetic variants that affect the size and shape of the cranium and the soft facial tissue features are largely unknown. Numerous studies on animal models and human craniofacial disorders have identified a large number of genes, which may regulate normal craniofacial embryonic development.In this study we implemented a targeted candidate gene approach to select more than 1,200 polymorphisms in over 170 genes that are likely to be involved in craniofacial development and morphology. These markers were genotyped in 587 DNA samples using massively parallel sequencing and analysed for association with 104 traits generated from 3-dimensional facial images and direct craniofacial measurements. Genetic associations (p-values<5.00E-08) were observed between 8 craniofacial traits and 34 single nucleotide polymorphisms (SNPs), including two previously described genes and 26 novel candidate genes and intergenic regions. This comprehensive candidate gene study has uncovered the largest number of novel genetic variants affecting normal facial appearance to date. These results will appreciably extend our understanding of the normal and abnormal embryonic development and impact our ability to predict the appearance of an individual from a DNA sample in forensic criminal investigations and missing person cases.


Sign in / Sign up

Export Citation Format

Share Document