Convergent synthesis of carbonic anhydrase inhibiting bi‐heterocyclic benzamides: Structure–activity relationship and mechanistic explorations through enzyme inhibition, kinetics, and computational studies

Author(s):  
Farhan M. Khan ◽  
Muhammad A. Abbasi ◽  
Aziz‐ur‐Rehman ◽  
Sabahat Z. Siddiqui ◽  
Abdul R. Sadiq Butt ◽  
...  
2020 ◽  
Vol 10 (2) ◽  
pp. 168-176
Author(s):  
Krishnasamy Gopinath ◽  
Nagarajan Subbiah ◽  
Muthusamy Karthikeyan

Background: Syzygium densiflorum Wall. ex Wight & Arn (Myrtaceae) has been traditionally used by the local tribes of the Nilgiris, Tamil Nadu, India, for the treatment of diabetes. Objective: This study aimed to isolate the major phytoconstituents from the S. densiflorum fruits and to perform computational studies for chemical reactivity and biological activity of the isolated compound. Materials and Methods: Two different compounds were isolated from ethanolic extract of S. densiflorum fruits and purified using HPLC. The structures of the compounds were elucidated on the basis of their 1H NMR, 13C NMR, 1H-1H COSY, HMBC, HRESIMS, and FT-IR data. Further, the chemical reactivity of the compounds was analyzed by density functional theory calculations and its therapeutic role in diabetic management was examined by comparing the structure of isolated compounds with previously reported bioactive compounds. Results: Of the two compounds ((6,6 & 1-kestopentaose (1) and 6-(hydroxymethyl)-3-[3,4,5- trihydroxy- 6-[(3,4,5-trihydroxyoxan-2-yl)oxymethyl]oxan-2-yl]oxyoxane-2,4,5-triol)(2)). β-glucosidase, β-galactosidase, α-glucosidase and β-amylase inhibition activity of the compounds were predicted by structure activity relationship. Conclusion: Structure-activity relationship analysis was performed to predict the therapeutic role of isolated compounds. These computational studies may be performed to minimize the efforts to determine the therapeutic role of natural compounds.


Sign in / Sign up

Export Citation Format

Share Document