Histochemical demonstration of hydrogen peroxide production by leukocytes in fixed-frozen tissue sections of inflammatory lesions

1994 ◽  
Vol 56 (4) ◽  
pp. 436-443 ◽  
Author(s):  
Arthur M. Dannenberg ◽  
Brian H. Schofield ◽  
Jay B. Rao ◽  
Theresa T. Dinh ◽  
Ki Lee ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tim Kümmel ◽  
Björn van Marwick ◽  
Miriam Rittel ◽  
Carina Ramallo Guevara ◽  
Felix Wühler ◽  
...  

AbstractFrozen section analysis is a frequently used method for examination of tissue samples, especially for tumour detection. In the majority of cases, the aim is to identify characteristic tissue morphologies or tumour margins. Depending on the type of tissue, a high number of misdiagnoses are associated with this process. In this work, a fast spectroscopic measurement device and workflow was developed that significantly improves the speed of whole frozen tissue section analyses and provides sufficient information to visualize tissue structures and tumour margins, dependent on their lipid and protein molecular vibrations. That optical and non-destructive method is based on selected wavenumbers in the mid-infrared (MIR) range. We present a measuring system that substantially outperforms a commercially available Fourier Transform Infrared (FT-IR) Imaging system, since it enables acquisition of reduced spectral information at a scan field of 1 cm2 in 3 s, with a spatial resolution of 20 µm. This allows fast visualization of segmented structure areas with little computational effort. For the first time, this multiphotometric MIR system is applied to biomedical tissue sections. We are referencing our novel MIR scanner on cryopreserved murine sagittal and coronal brain sections, especially focusing on the hippocampus, and show its usability for rapid identification of primary hepatocellular carcinoma (HCC) in mouse liver.


2017 ◽  
Vol 12 (10) ◽  
pp. 1111-1119 ◽  
Author(s):  
Kojiro Fuku ◽  
Yuta Miyase ◽  
Yugo Miseki ◽  
Takashi Funaki ◽  
Takahiro Gunji ◽  
...  

1986 ◽  
Vol 34 (12) ◽  
pp. 1667-1672 ◽  
Author(s):  
F Gallyas ◽  
J R Wolff

Physical developers can increase the visibility of end products of certain histochemical reactions, such as oxidative polymerization of diaminobenzidine and selective binding of complex silver iodide ions to Alzheimer's neurofibrillary changes. Unfortunately, this intensification by silver coating is generally superimposed on a nonspecific staining originating from the argyrophil III reaction, which also takes place when tissue sections are treated with physical developers. The present study reveals that the argyrophil III reaction can be suppressed when tissue sections are treated with certain metal ions and hydrogen peroxide before they are transferred to the physical developer. The selective intensification of Alzheimer's neurofibrillary changes requires a pre-treatment with lanthanum nitrate (10 mM/liter) and 3% hydrogen peroxide for 1 hr. The diaminobenzidine reaction can be selectively intensified when physical development is preceded by consecutive treatments with copper sulfate (10 mM/liter, pH 5, 10 min) and hydrogen peroxide (3%, pH 7, 10 min). In peroxidase histochemistry, this high-grade intensification may help to increase specificity and reduce the threshold of detectability in tracing neurons with horseradish peroxidase or in immunohistochemistry when the peroxidase-antiperoxidase method is used.


2014 ◽  
Vol 120 (1) ◽  
pp. 55-62 ◽  
Author(s):  
Rachel E. Kast ◽  
Gregory W. Auner ◽  
Mark L. Rosenblum ◽  
Tom Mikkelsen ◽  
Sally M. Yurgelevic ◽  
...  

2009 ◽  
Vol 47 (1) ◽  
pp. 49-56 ◽  
Author(s):  
Carla A. Di Maria ◽  
Marie A. Bogoyevitch ◽  
Douglas J. McKitrick ◽  
Leonard F. Arnolda ◽  
Livia C. Hool ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document