scholarly journals Evaluation of downscaled estimates of monthly temperature and precipitation for a Southern Ecuador case study

2015 ◽  
Vol 36 (3) ◽  
pp. 1244-1255 ◽  
Author(s):  
A. Ochoa ◽  
L. Campozano ◽  
E. Sánchez ◽  
R. Gualán ◽  
E. Samaniego
2021 ◽  
Author(s):  
Livia Serrao ◽  
Lorenzo Giovannini ◽  
Luz Elita Balcazar Terrones ◽  
Hugo Alfredo Huamaní Yupanqui ◽  
Dino Zardi

<p>Climatic characteristics and weather events have always conditioned the success of a harvest. Climate change and the associated increase in intense weather phenomena in recent years are making it clearer than ever that agriculture is among the sectors most at risk. Although problems in agriculture are found all over the world, the most vulnerable contexts are those where agriculture is low-tech and rainfed. Here, adaptation strategies are even more urgent to secure the food production. Assuming that the awareness of climate change is the basis for the adoption of adaptation and mitigation strategies, it is interesting to correlate the degree of perception of local inhabitants with their willingness to adopt bottom-up initiatives.</p><p>The current study focuses on banana producers’ perceptions of climate change in a tropical valley, and the initiatives that farmers adopt to cope with recent intense weather events. The banana plant (Musa Musacae) grows in tropical climates with annual rainfall around 2000 mm and average temperatures around 27°C. The species’ threadlike root system and the weak pseudostem make it particularly vulnerable to wind gusts, which, at speeds higher than 15 m/s, can bend and knock over entire plantations. The increased frequency of convective thunderstorms observed in connection with climate change has made downburst phenomena more frequent and caused greater crop loss.</p><p>The aim of the present work is to estimate the correlation between banana producers’ perceptions of climate change and their bottom-up initiatives for adaptation. To achieve this goal, the case study of the Upper Huallaga valley, which is located in the Peruvian Amazon region as shown in Figure 1, is analysed. The work was carried out at two levels: (i) we interviewed 73 banana producers in the valley, (ii) we estimated the alterations and trends in temperature and precipitation recorded by the only three available meteorological stations within the valley. Finally, we compared the two databases to evaluate if the perception of the population was confirmed by the data. Most of the surveyed population observed an increase in temperature, consistent with the results of the data analysis, and an increase in precipitation, which was not consistent with observations as these showed a cyclic variation without a clear trend. With regards to the adaptation measures, it was observed that, although a clear majority of the sample surveyed (around 82%) agreed with the existence of climate change, only 46% of them had taken any initiative to counteract adverse events in some way. However, it is important to note that the strategies implemented were all devised and implemented by the farmers themselves. Funding and coordinating the dissemination of these adaptation practices by the local authority through a rural development plan could certainly strengthen the population’s effort.</p><p><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gnp.34e8e7df2cff59382630161/sdaolpUECMynit/12UGE&app=m&a=0&c=59f620ca81f3a3bb7bb44139d499513c&ct=x&pn=gnp.elif&d=1" alt=""></p><p><em>Figure 1, On the left side: the Upper Huallaga basin. </em><em>On the right side: the study area</em></p>


2019 ◽  
Author(s):  
ROBERTO RANZI ◽  
ELENI MARIA MICHAILIDI ◽  
MASSIMO TOMIROTTI ◽  
EMANUELE ECCEL ◽  
MICHELE BRUNETTI ◽  
...  

New Forests ◽  
2019 ◽  
Vol 51 (2) ◽  
pp. 313-334
Author(s):  
Pablo Quichimbo ◽  
Leticia Jiménez ◽  
Darío Veintimilla ◽  
Karin Potthast ◽  
Alexander Tischer ◽  
...  

2012 ◽  
Vol 103 (2) ◽  
pp. 155-170 ◽  
Author(s):  
K.R. Searle ◽  
A. Blackwell ◽  
D. Falconer ◽  
M. Sullivan ◽  
A. Butler ◽  
...  

AbstractInterpreting spatial patterns in the abundance of species over time is a fundamental cornerstone of ecological research. For many species, this type of analysis is hampered by datasets that contain a large proportion of zeros, and data that are overdispersed and spatially autocorrelated. This is particularly true for insects, for which abundance data can fluctuate from zero to many thousands in the space of weeks. Increasingly, an understanding of the ways in which environmental variation drives spatial and temporal patterns in the distribution, abundance and phenology of insects is required for management of pests and vector-borne diseases. In this study, we combine the use of smoothing techniques and generalised linear mixed models to relate environmental drivers to key phenological patterns of two species of biting midges, Culicoides pulicaris and C. impunctatus, of which C. pulicaris has been implicated in transmission of bluetongue in Europe. In so doing, we demonstrate analytical tools for linking the phenology of species with key environmental drivers, despite using a relatively small dataset containing overdispersed and zero-inflated data. We demonstrate the importance of landcover and climatic variables in determining the seasonal abundance of these two vector species, and highlight the need for more empirical data on the effects of temperature and precipitation on the life history traits of palearctic Culicoides spp. in Europe.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Roman Corobov ◽  
Igor Sîrodoev ◽  
Sonja Koeppel ◽  
Nickolai Denisov ◽  
Ghennadi Sîrodoev

Vulnerability to climate change of the Moldavian part of the Dniester river was assessed as the function of exposure, sensitivity, and adaptive capacity of its basin’s natural and socioeconomic systems. As a spatial “scale” of the assessment, Moldova’s administrative-territorial units (ATUs) were selected. The exposure assessment was based on the climatic analysis of baseline (1971–2000) temperature and precipitation and projections of their changes in 2021–2050, separately for cold and warm periods. The sensitivity assessment included physiographical and socioeconomic characteristics, described by a set of specific indicators. The adaptive capacity was expressed by general economic and agricultural indicators, taking into consideration the medical provision and housing conditions. Through a ranking approach, the relative vulnerability of each ATU was calculated by summing its sensitivity and adaptive capacity ranks; the latter were obtained as combinations of their primary indicator ranks, arranged in an increasing and decreasing order, respectively. Due to lack of sound knowledge on these components' importance in overall assessment of vulnerability, their weights were taken as conventionally equal. Mapping of vulnerability revealed that ATUs neighboring to municipalities are the most vulnerable and need special attention in climate change adaptation. The basin’s “hotspots” were discussed with public participation.


Sign in / Sign up

Export Citation Format

Share Document