Observed and simulated Indian Ocean Dipole activity since the mid‐19th century and its relation to East African short rains

2019 ◽  
Vol 39 (11) ◽  
pp. 4467-4478
Author(s):  
Anja Thielke ◽  
Thomas Mölg
2005 ◽  
Vol 18 (21) ◽  
pp. 4514-4530 ◽  
Author(s):  
Swadhin K. Behera ◽  
Jing-Jia Luo ◽  
Sebastien Masson ◽  
Pascale Delecluse ◽  
Silvio Gualdi ◽  
...  

Abstract The variability in the East African short rains is investigated using 41-yr data from the observation and 200-yr data from a coupled general circulation model known as the Scale Interaction Experiment-Frontier Research Center for Global Change, version 1 (SINTEX-F1). The model-simulated data provide a scope to understand the climate variability in the region with a better statistical confidence. Most of the variability in the model short rains is linked to the basinwide large-scale coupled mode, that is, the Indian Ocean dipole (IOD) in the tropical Indian Ocean. The analysis of observed data and model results reveals that the influence of the IOD on short rains is overwhelming as compared to that of the El Niño–Southern Oscillation (ENSO); the correlation between ENSO and short rains is insignificant when the IOD influence is excluded. The IOD–short rains relationship does not change significantly in a model experiment in which the ENSO influence is removed by decoupling the ocean and atmosphere in the tropical Pacific. The partial correlation analysis of the model data demonstrates that a secondary influence comes from a regional mode located near the African coast. Inconsistent with the observational findings, the model results show a steady evolution of IOD prior to extreme events of short rains. Dynamically consistent evolution of correlations is found in anomalies of the surface winds, currents, sea surface height, and sea surface temperature. Anomalous changes of the Walker circulation provide a necessary driving mechanism for anomalous moisture transport and convection over the coastal East Africa. The model results nicely augment the observational findings and provide us with a physical basis to consider IOD as a predictor for variations of the short rains. This is demonstrated in detail using the statistical analysis method. The prediction skill of the dipole mode SST index in July and August is 92% for the observation, which scales slightly higher for the model index (96%) in August. As observed in data, the model results show decadal weakening in the relationship between IOD and short rains owing to weakening in the IOD activity.


2018 ◽  
Vol 31 (16) ◽  
pp. 6611-6631 ◽  
Author(s):  
Linda Hirons ◽  
Andrew Turner

The role of the Indian Ocean dipole (IOD) in controlling interannual variability in the East African short rains, from October to December, is examined in state-of-the-art models and in detail in one particular climate model. In observations, a wet short-rainy season is associated with the positive phase of the IOD and anomalous easterly low-level flow across the equatorial Indian Ocean. A model’s ability to capture the teleconnection to the positive IOD is closely related to its representation of the mean state. During the short-rains season, the observed low-level wind in the equatorial Indian Ocean is westerly. However, half of the models analyzed exhibit mean-state easterlies across the entire basin. Specifically, those models that exhibit mean-state low-level equatorial easterlies in the Indian Ocean, rather than the observed westerlies, are unable to capture the latitudinal structure of moisture advection into East Africa during a positive IOD. Furthermore, the associated anomalous easterly surface wind stress causes upwelling in the eastern Indian Ocean. This upwelling draws up cool subsurface waters, enhancing the zonal sea surface temperature gradient between west and east and strengthening the positive IOD pattern, further amplifying the easterly wind stress. This positive Bjerknes coupled feedback is stronger in easterly mean-state models, resulting in a wetter East African short-rain precipitation bias in those models.


2019 ◽  
Vol 32 (22) ◽  
pp. 7989-8001 ◽  
Author(s):  
David MacLeod ◽  
Cyril Caminade

Abstract El Niño–Southern Oscillation (ENSO) has large socioeconomic impacts worldwide. The positive phase of ENSO, El Niño, has been linked to intense rainfall over East Africa during the short rains season (October–December). However, we show here that during the extremely strong 2015 El Niño the precipitation anomaly over most of East Africa during the short rains season was less intense than experienced during previous El Niños, linked to less intense easterlies over the Indian Ocean. This moderate impact was not indicated by reforecasts from the ECMWF operational seasonal forecasting system, SEAS5, which instead forecast large probabilities of an extreme wet signal, with stronger easterly anomalies over the surface of the Indian Ocean and a colder eastern Indian Ocean/western Pacific than was observed. To confirm the relationship of the eastern Indian Ocean to East African rainfall in the forecast for 2015, atmospheric relaxation experiments are carried out that constrain the east Indian Ocean lower troposphere to reanalysis. By doing so the strong wet forecast signal is reduced. These results raise the possibility that link between ENSO and Indian Ocean dipole events is too strong in the ECMWF dynamical seasonal forecast system and that model predictions for the East African short rains rainfall during strong El Niño events may have a bias toward high probabilities of wet conditions.


2010 ◽  
Vol 37 (6) ◽  
pp. n/a-n/a ◽  
Author(s):  
Anil K. Gupta ◽  
Sudipta Sarkar ◽  
Soma De ◽  
Steven C. Clemens ◽  
Angamuthu Velu

2020 ◽  
Vol 54 (11-12) ◽  
pp. 4991-5011 ◽  
Author(s):  
Weiran Liu ◽  
Kerry H. Cook ◽  
Edward K. Vizy

Author(s):  
Philip Gooding

Central Tanzania is a heterogenous region in the interior of East Africa. Its history, politics, and cultures have been affected by numerous outside influences. These outside influences have primarily come in the form of migrants from elsewhere in the East African interior and the Western Indian Ocean world, and in the form of “proto-colonial,” colonial, and postcolonial governance structures, whose centers since the mid-19th century have been located in Tanzania’s coastal or island regions. Despite the apparent “newness” that each migrant group or governor instituted, Central Tanzania’s politics and cultures have shown a remarkable adaptability to new influences, whether that be to ivory traders arriving in the region during the 19th century or to colonial rulers attempting to govern it during the 20th. Additionally, Islam and Christianity have taken a variety of forms within Central Tanzania, none of which exactly correspond to the ideals of those who originally brought them to the region. The peoples of Central Tanzania have acculturated to outside influences and reconciled them with their preexisting and developing political and cultural structures.


Sign in / Sign up

Export Citation Format

Share Document