scholarly journals The Indian Ocean Dipole and its Impact on East African Short Rains in Two CMIP5 Historical Scenarios With and Without Anthropogenic Influence

2020 ◽  
Vol 125 (16) ◽  
Author(s):  
M. T. Blau ◽  
K.‐J. Ha
2005 ◽  
Vol 18 (21) ◽  
pp. 4514-4530 ◽  
Author(s):  
Swadhin K. Behera ◽  
Jing-Jia Luo ◽  
Sebastien Masson ◽  
Pascale Delecluse ◽  
Silvio Gualdi ◽  
...  

Abstract The variability in the East African short rains is investigated using 41-yr data from the observation and 200-yr data from a coupled general circulation model known as the Scale Interaction Experiment-Frontier Research Center for Global Change, version 1 (SINTEX-F1). The model-simulated data provide a scope to understand the climate variability in the region with a better statistical confidence. Most of the variability in the model short rains is linked to the basinwide large-scale coupled mode, that is, the Indian Ocean dipole (IOD) in the tropical Indian Ocean. The analysis of observed data and model results reveals that the influence of the IOD on short rains is overwhelming as compared to that of the El Niño–Southern Oscillation (ENSO); the correlation between ENSO and short rains is insignificant when the IOD influence is excluded. The IOD–short rains relationship does not change significantly in a model experiment in which the ENSO influence is removed by decoupling the ocean and atmosphere in the tropical Pacific. The partial correlation analysis of the model data demonstrates that a secondary influence comes from a regional mode located near the African coast. Inconsistent with the observational findings, the model results show a steady evolution of IOD prior to extreme events of short rains. Dynamically consistent evolution of correlations is found in anomalies of the surface winds, currents, sea surface height, and sea surface temperature. Anomalous changes of the Walker circulation provide a necessary driving mechanism for anomalous moisture transport and convection over the coastal East Africa. The model results nicely augment the observational findings and provide us with a physical basis to consider IOD as a predictor for variations of the short rains. This is demonstrated in detail using the statistical analysis method. The prediction skill of the dipole mode SST index in July and August is 92% for the observation, which scales slightly higher for the model index (96%) in August. As observed in data, the model results show decadal weakening in the relationship between IOD and short rains owing to weakening in the IOD activity.


2018 ◽  
Vol 31 (16) ◽  
pp. 6611-6631 ◽  
Author(s):  
Linda Hirons ◽  
Andrew Turner

The role of the Indian Ocean dipole (IOD) in controlling interannual variability in the East African short rains, from October to December, is examined in state-of-the-art models and in detail in one particular climate model. In observations, a wet short-rainy season is associated with the positive phase of the IOD and anomalous easterly low-level flow across the equatorial Indian Ocean. A model’s ability to capture the teleconnection to the positive IOD is closely related to its representation of the mean state. During the short-rains season, the observed low-level wind in the equatorial Indian Ocean is westerly. However, half of the models analyzed exhibit mean-state easterlies across the entire basin. Specifically, those models that exhibit mean-state low-level equatorial easterlies in the Indian Ocean, rather than the observed westerlies, are unable to capture the latitudinal structure of moisture advection into East Africa during a positive IOD. Furthermore, the associated anomalous easterly surface wind stress causes upwelling in the eastern Indian Ocean. This upwelling draws up cool subsurface waters, enhancing the zonal sea surface temperature gradient between west and east and strengthening the positive IOD pattern, further amplifying the easterly wind stress. This positive Bjerknes coupled feedback is stronger in easterly mean-state models, resulting in a wetter East African short-rain precipitation bias in those models.


2019 ◽  
Vol 32 (22) ◽  
pp. 7989-8001 ◽  
Author(s):  
David MacLeod ◽  
Cyril Caminade

Abstract El Niño–Southern Oscillation (ENSO) has large socioeconomic impacts worldwide. The positive phase of ENSO, El Niño, has been linked to intense rainfall over East Africa during the short rains season (October–December). However, we show here that during the extremely strong 2015 El Niño the precipitation anomaly over most of East Africa during the short rains season was less intense than experienced during previous El Niños, linked to less intense easterlies over the Indian Ocean. This moderate impact was not indicated by reforecasts from the ECMWF operational seasonal forecasting system, SEAS5, which instead forecast large probabilities of an extreme wet signal, with stronger easterly anomalies over the surface of the Indian Ocean and a colder eastern Indian Ocean/western Pacific than was observed. To confirm the relationship of the eastern Indian Ocean to East African rainfall in the forecast for 2015, atmospheric relaxation experiments are carried out that constrain the east Indian Ocean lower troposphere to reanalysis. By doing so the strong wet forecast signal is reduced. These results raise the possibility that link between ENSO and Indian Ocean dipole events is too strong in the ECMWF dynamical seasonal forecast system and that model predictions for the East African short rains rainfall during strong El Niño events may have a bias toward high probabilities of wet conditions.


2010 ◽  
Vol 37 (6) ◽  
pp. n/a-n/a ◽  
Author(s):  
Anil K. Gupta ◽  
Sudipta Sarkar ◽  
Soma De ◽  
Steven C. Clemens ◽  
Angamuthu Velu

Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1302 ◽  
Author(s):  
Qing-Gang Gao ◽  
Vonevilay Sombutmounvong ◽  
Lihua Xiong ◽  
Joo-Heon Lee ◽  
Jong-Suk Kim

In this study, we investigated extreme droughts in the Indochina peninsula and their relationship with the Indian Ocean Dipole (IOD) mode. Areas most vulnerable to drought were analyzed via statistical simulations of the IOD based on historical observations. Results of the long-term trend analysis indicate that areas with increasing spring (March–May) rainfall are mainly distributed along the eastern coast (Vietnam) and the northwestern portions of the Indochina Peninsula (ICP), while Central and Northern Laos and Northern Cambodia have witnessed a reduction in spring rainfall over the past few decades. This trend is similar to that of extreme drought. During positive IOD years, the frequency of extreme droughts was reduced throughout Vietnam and in the southwestern parts of China, while increased drought was observed in Cambodia, Central Laos, and along the coastline adjacent to the Myanmar Sea. Results for negative IOD years were similar to changes observed for positive IOD years; however, the eastern and northern parts of the ICP experienced reduced droughts. In addition, the results of the statistical simulations proposed in this study successfully simulate drought-sensitive areas and evolution patterns of various IOD changes. The results of this study can help improve diagnostic techniques for extreme droughts in the ICP.


2016 ◽  
Vol 137 (1-2) ◽  
pp. 217-230 ◽  
Author(s):  
Philipp Hochreuther ◽  
Jakob Wernicke ◽  
Jussi Grießinger ◽  
Thomas Mölg ◽  
Haifeng Zhu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document