Maximum July–September temperatures derived from tree‐ring densities on the western Loess Plateau, China

Author(s):  
Huiming Song ◽  
Ruochen Mei ◽  
Yu Liu ◽  
Daniel Nievergelt ◽  
Anne Verstege ◽  
...  
PLoS ONE ◽  
2014 ◽  
Vol 9 (4) ◽  
pp. e93504 ◽  
Author(s):  
Huiming Song ◽  
Yu Liu ◽  
Qiang Li ◽  
Na Gao ◽  
Yongyong Ma ◽  
...  

2011 ◽  
Vol 37 (4) ◽  
pp. 686-693 ◽  
Author(s):  
Ling-Ling LI ◽  
Gao-Bao HUANG ◽  
Ren-Zhi ZHANG ◽  
Li-Qun CAI ◽  
Zhu-Zhu LUO ◽  
...  

2013 ◽  
Vol 308-309 ◽  
pp. 27-35 ◽  
Author(s):  
Nan Sun ◽  
Xiaoqiang Li ◽  
John Dodson ◽  
Xinying Zhou ◽  
Keliang Zhao ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
G. B. Huang ◽  
Z. Z. Luo ◽  
L. L. Li ◽  
R. Z. Zhang ◽  
G. D. Li ◽  
...  

The combination of continuous cereal cropping, tillage and stubble removal reduces soil fertility and increases soil erosion on sloping land. The objective of the present study was to assessment soil fertility changes under stubble removal and stubble retention in the Loess Plateau where soil is prone to severe erosion. It was indicated that soil N increased a lot for and two stubble retention treatments had the higher N balance at the end of two rotations. Soil K balance performed that soil K was in deficient for all treatments and two stubble retention treatments had lower deficit K. The treatments with stubble retention produced higher grain yields than the stubble removal treatments. It was concluded that stubble retention should be conducted to increase crops productivity, improve soil fertility as well as agriculture sustainability in the Loess plateau, China.


1997 ◽  
Vol 146 (1-2) ◽  
pp. 73-82 ◽  
Author(s):  
Xiao-Min Fang ◽  
Ji-Jun Li ◽  
Rob Van der Voo ◽  
Conall Mac Niocaill ◽  
Xue-Rong Dai ◽  
...  

2015 ◽  
Vol 6 ◽  
Author(s):  
Yucheng Wu ◽  
Liangcheng Tan ◽  
Wuxing Liu ◽  
Baozhan Wang ◽  
Jianjun Wang ◽  
...  

2013 ◽  
Vol 9 (6) ◽  
pp. 6311-6344 ◽  
Author(s):  
Q. Cai ◽  
Y. Liu ◽  
Y. Lei ◽  
G. Bao ◽  
B. Sun

Abstract. We utilized tree-ring cores, collected from three sites at Lingkong Mountain located in the southeast part of the Chinese Loess Plateau (CLP), to develop a regional ring-width chronology. Significant positive correlations between the tree-ring index and the monthly Palmer drought severity index (PDSI) were identified, indicating that the radial growth of trees in this region was moisture-limited. The March–August mean PDSI was quantitatively reconstructed from 1703 to 2008 with an explained variance of 46.4%. Seven dry periods during 1719–1726, 1742–1748, 1771–1778, 1807–1818, 1832–1848, 1867–1932 and 1993–2008 and six wet periods during 1727–1741, 1751–1757, 1779–1787, 1797–1805, 1853–1864 and 1934–1957 were revealed in our reconstruction. Among them, 1867–1932 and 1934–1957 were identified as the longest dry and wet periods, respectively. On the centennial scale, the 19th century was recognized as the driest century. The drying tendency since 1960s was evident, however, recent drought was still within the frame of natural climate variability based on the 306 yr PDSI reconstruction. The warm and dry phases of Lingkong Mountain were in accordance with changes in the East Asian summer monsoon (EASM) strength, they also showed strong similarity to other tree-ring based moisture indexes in large areas in and around the CLP, indicating the moisture variability in the CLP was almost synchronous and closely related with EASM variation. Spatial correlation analysis suggested that this PDSI reconstruction could represent the moisture variations for most parts of the CLP, even larger area of northern China and east Mongolia. Multi-taper spectral analysis revealed significant cycles at the inter-annual (2.0–7.8 yr), inter-decadal (37.9 yr) and centennial (102 yr) scales, suggesting the influence of ENSO and solar activity on moisture conditions in the CLP. Results of this study are very helpful for us to improve the knowledge of past climate change in the CLP and enable us to prevent and manage future natural disasters.


Sign in / Sign up

Export Citation Format

Share Document