scholarly journals Tree-Ring Based May-July Temperature Reconstruction Since AD 1630 on the Western Loess Plateau, China

PLoS ONE ◽  
2014 ◽  
Vol 9 (4) ◽  
pp. e93504 ◽  
Author(s):  
Huiming Song ◽  
Yu Liu ◽  
Qiang Li ◽  
Na Gao ◽  
Yongyong Ma ◽  
...  
Author(s):  
Huiming Song ◽  
Ruochen Mei ◽  
Yu Liu ◽  
Daniel Nievergelt ◽  
Anne Verstege ◽  
...  

2014 ◽  
Vol 81 (3) ◽  
pp. 513-519 ◽  
Author(s):  
Yang Deng ◽  
Xiaohua Gou ◽  
Linlin Gao ◽  
Tao Yang ◽  
Meixue Yang

AbstractWe developed a tree-ring chronology (AD 1446–2008) based on 75 cores from 37Abies squamataMast. trees from the Shaluli Mountains, southeastern Tibet Plateau, China, using signal-free methods, which are ideally suited to remove or reduce the distortion introduced during traditional standardization. This chronology correlates best with regional temperatures in June–July, which allowed us to develop a June–July temperature reconstruction that explained 51.2% of the variance in the instrumental record. The reconstruction showed seven cold periods and five warm periods. Cold periods were identified from AD 1472 to 1524, 1599 to 1653, 1661 to 1715, 1732 to 1828, 1837 to 1847, 1865 to 1876 and 1907 to 1926. Warm intervals occurred from AD 1446 to 1471, 1525 to 1598, 1716 to 1731, 1848 to 1864, 1877 to 1906 and 1927 to present. The reconstruction agrees well with nearby tree-ring-based temperature reconstructions. Spatial correlation analyses suggest that our reconstructions provide information on June–July temperature variability for the southeastern Tibetan Plateau and its vicinity. Spectral analyses revealed significant peaks at 2–6, 10.7, 51.2, 102.2 and 204.8 yr. The temperature variability in this area may be affected by ENSO, the Pacific Decadal Oscillation and solar activity.


2021 ◽  
Vol 13 (20) ◽  
pp. 11376
Author(s):  
Keke Yu ◽  
Le Wang ◽  
Lipeng Liu ◽  
Enguo Sheng ◽  
Xingxing Liu ◽  
...  

Understanding the synchronicity of and discrepancy among temperature variations on the western Loess Plateau (WLP), China, is critical for establishing the drivers of regional temperature variability. Here we present an authigenic carbonate-content timeseries spanning the last 300 years from sediments collected from Lake Chaonaqiu in the Liupan Mountains, WLP, as a decadal-scale record of temperature. Our results reveal six periods of relatively low temperature, during the intervals AD 1743–1750, 1770–1780, 1792–1803, 1834–1898, 1930–1946, and 1970–1995, and three periods of relatively high temperature during 1813–1822, 1910–1928, and since 2000. These findings are consistent with tree-ring datasets from the WLP and correlate well with extreme cold and warm events documented in historical literature. Our temperature reconstruction is also potentially representative of large-scale climate patterns over northern China and more broadly over the Northern Hemisphere. The Pacific Decadal Oscillation (PDO) might be the dominant factor affecting temperature variations over the WLP on decadal timescales.


2011 ◽  
Vol 37 (4) ◽  
pp. 686-693 ◽  
Author(s):  
Ling-Ling LI ◽  
Gao-Bao HUANG ◽  
Ren-Zhi ZHANG ◽  
Li-Qun CAI ◽  
Zhu-Zhu LUO ◽  
...  

2021 ◽  
Author(s):  
Vladimir Matskovsky ◽  
Fidel A. Roig ◽  
Mauricio Fuentes ◽  
Irina Korneva ◽  
Diego Araneo ◽  
...  

Abstract Proxy climate records, such as those derived from tree rings, are necessary to extend relatively short instrumental meteorological observations into the past. Tierra del Fuego is the most austral territory with forests in the world, situated close to the Antarctic Peninsula, which makes this region especially interesting for paleoclimatic research. However, high-quality, high-resolution summer temperature reconstruction are lacking in the region. In this study we used 63 tree-ring width chronologies of Nothofagus pumilio and Nothofagus betuloides and partial least squares regression (PLSR) to produce annually resolved December-to-February temperature reconstruction since AD 1600 which explains up to 65% of instrumental temperature variability. We also found that observed summer temperature variability in Tierra del Fuego is primarily driven by the fluctuations of atmospheric pressure systems both in the South Atlantic and South Pacific, while it is insignificantly correlated to major hemispheric modes: ENSO and SAM. This fact makes our reconstruction important for climate modelling experiments, as it represents specific regional variability. Our reconstruction can be used for direct comparison with model outputs to better understand model limitations or to tune a model or contribute to larger scale reconstructions based on paleoclimatic data assimilation. Moreover, we showed that PLSR has improved performance over principal component regression (PCR) in the case of multiple tree-ring predictors. According to these results, PLSR may be a preferable method over PCR for the use in automated tree-ring based reconstruction approaches, akin widely used point-by-point regression.


2016 ◽  
Vol 12 (7) ◽  
pp. 1485-1498 ◽  
Author(s):  
Liangjun Zhu ◽  
Yuandong Zhang ◽  
Zongshan Li ◽  
Binde Guo ◽  
Xiaochun Wang

Abstract. We present a reconstruction of July–August mean maximum temperature variability based on a chronology of tree-ring widths over the period AD 1646–2013 in the northern part of the northwestern Sichuan Plateau (NWSP), China. A regression model explains 37.1 % of the variance of July–August mean maximum temperature during the calibration period from 1954 to 2012. Compared with nearby temperature reconstructions and gridded land surface temperature data, our temperature reconstruction had high spatial representativeness. Seven major cold periods were identified (1708–1711, 1765–1769, 1818–1821, 1824–1828, 1832–1836, 1839–1842, and 1869–1877), and three major warm periods occurred in 1655–1668, 1719–1730, and 1858–1859 from this reconstruction. The typical Little Ice Age climate can also be well represented in our reconstruction and clearly ended with climatic amelioration at the late of the 19th century. The 17th and 19th centuries were cold with more extreme cold years, while the 18th and 20th centuries were warm with less extreme cold years. Moreover, the 20th century rapid warming was not obvious in the NWSP mean maximum temperature reconstruction, which implied that mean maximum temperature might play an important and different role in global change as unique temperature indicators. Multi-taper method (MTM) spectral analysis revealed significant periodicities of 170-, 49–114-, 25–32-, 5.7-, 4.6–4.7-, 3.0–3.1-, 2.5-, and 2.1–2.3-year quasi-cycles at a 95 % confidence level in our reconstruction. Overall, the mean maximum temperature variability in the NWSP may be associated with global land–sea atmospheric circulation (e.g., ENSO, PDO, or AMO) as well as solar and volcanic forcing.


2009 ◽  
pp. n/a-n/a ◽  
Author(s):  
Lily Wang ◽  
Jianping Duan ◽  
Jin Chen ◽  
Lei Huang ◽  
Xuemei Shao

Sign in / Sign up

Export Citation Format

Share Document