Analysis of behaviour and relationship of four daily precipitation concentration indices according to Mexico's precipitation

Author(s):  
Gerardo Núñez‐González
2019 ◽  
Vol 215 ◽  
pp. 85-98 ◽  
Author(s):  
Pablo Sarricolea ◽  
Óliver Meseguer-Ruiz ◽  
Roberto Serrano-Notivoli ◽  
María Victoria Soto ◽  
Javier Martin-Vide

2015 ◽  
Vol 29 (11) ◽  
pp. 3941-3955 ◽  
Author(s):  
Peng Shi ◽  
Miao Wu ◽  
Simin Qu ◽  
Peng Jiang ◽  
Xueyuan Qiao ◽  
...  

2015 ◽  
Vol 15 (3) ◽  
pp. 617-625 ◽  
Author(s):  
A. Benhamrouche ◽  
D. Boucherf ◽  
R. Hamadache ◽  
L. Bendahmane ◽  
J. Martin-Vide ◽  
...  

Abstract. In this paper, the spatial and temporal distribution of the daily precipitation concentration index (CI) in Algeria (south Mediterranean Sea) has been assessed. CI is an index related to the rainfall intensity and erosive capacity; therefore, this index is of great interest for studies on torrential rainfall and floods. Forty-two daily rainfall series based on high-quality and fairly regular rainfall records for the period from 1970 to 2008 were used. The daily precipitation CI results allowed the identification of three climate zones: the northern country, characterized by coastal regions with CI values between 0.59 and 0.63; the highlands, with values between 0.57 and 0.62, except for the region of Biskra (CI = 0.70); and the southern region of the country, with high rainfall concentrations with values between 0.62 and 0.69.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 627
Author(s):  
Kevin K. W. Cheung ◽  
Aliakbar. A. Rasuly ◽  
Fei Ji ◽  
Lisa T.-C. Chang

In this study; the spatial distribution of the Daily Precipitation Concentration Index (DPCI) has been analyzed inside the Greater Sydney Metropolitan Area (GSMA). Accordingly, the rainfall database from the Australian Bureau of Meteorology archive was utilized after comprehensive quality control. The compiled data contains a set of 41 rainfall stations indicating consistent daily precipitation series from 1950 to 2015. In the analysis of the DPCI across GSMA the techniques of Moran’s Spatial Autocorrelation has been applied. In addition, a cross-covariance method was applied to assess the spatial interdependency between vector-based datasets after performing an Ordinary Kriging interpolation. The results identify four well-recognized intense rainfall development zones: the south coast and topographic areas of the Illawarra district characterized by Tasman Sea coastal regions with DPCI values ranging from 0.61 to 0.63, the western highlands of the Blue Mountains, with values between 0.60 and 0.62, the inland regions, with lowest rainfall concentrations between 0.55 and 0.59, and lastly the districts located inside the GSMA with DPCI ranging 0.60 to 0.61. Such spatial distribution has revealed the rainstorm and severe thunderstorm activity in the area. This study applies the present models to identify the nature and mechanisms underlying the distribution of torrential rains over space within the metropolis of Sydney, and to monitor any changes in the spatial pattern under the warming climate.


2021 ◽  
Author(s):  
Aziz Benhamrouche ◽  
Javier Martin-Vide ◽  
Quoc Bao Pham ◽  
Mostefa E. Kouachi ◽  
M. Carmen Moreno-Garcia

Abstract Empirical frequency distribution of daily precipitation amounts can be fitted by a negative exponential distribution, because anywhere there are many small daily totals and few large ones. Therefore, the cumulative percentages of days with precipitation, sorted in increasing order according to their amounts, against the cumulative percentage of the rainfall amounts that they contribute are fitted by positive exponential curves Y = aX, a and b constants. Based on these curves, the Concentration Index (CI) evaluates the contribution of the rainiest days to the total amount. In this study the CI has been calculated for 15 meteorological stations in Da Nang city and Quang Nam province in Central Coast Vietnam, for the 1979–2016 period. The results show high values of CI, ranging from 0.62 to 0.72. Conversely, the linear correlation between altitude and CI is negative (R=-0.60, p < 0.01). There are no correlations between the latitude nor the annual mean number of precipitation days and the CI. CI change for the sub-periods of 1979–1997 and 1998–2016 is also analyzed.


2011 ◽  
Vol 26 (4) ◽  
pp. 541-554 ◽  
Author(s):  
Winícius dos Santos Araújo ◽  
José Ivaldo Barbosa de Brito

The objective of this study was to investigate statistically the precipitation variability in annual scale from the states of the Bahia and Sergipe using daily precipitation data. From that, indexes of detection of climate changes were calculated to evaluate the relationship of the most significant indexes with the sea surface temperature (SST) anomalies of the Pacific and Atlantic oceans. The daily precipitation data used were for a period of 45 years of 75 meteorological stations supplied by the old net of the SUDENE available in the DSA and data of the of the SST anomalies obtained from NOAA. Influence of SST of the Pacific and Atlantic oceans on the precipitation of the studied area is evidenced. A decrease of CWD was verified; increase was observed in the number days with rain; therefore, the amount of annual total precipitation increased. Several stations presented positive or negative tendencies in all examined indexes, consequently, they are also related to regional aspects. Therefore, it is not possible to affirm that the climate alterations noted in the study area are due to the global climate changes.


Sign in / Sign up

Export Citation Format

Share Document