An investigation into the mechanism of dissolution rate enhancement of poorly water-soluble drugs from spray chilled gelucire 50/13 microspheres

2010 ◽  
Vol 99 (1) ◽  
pp. 262-274 ◽  
Author(s):  
Sheng Qi ◽  
Delphine Marchaud ◽  
Duncan Q.M. Craig
Author(s):  
Sadhna Khatry ◽  
Neha Sood ◽  
Sandeep Arora

Preparation of an effective formulation of poorly water-soluble drugs is a key challenge in pharmaceutical technology. Dissolution rate and solubility are the rate- limiting steps for increasing the bioavailability of poorly water‐soluble drugs. Solid dispersion is an efficient technique for improving dissolution rate and subsequently, the bioavailability of poorly water‐soluble drugs. Surface sSolid dDispersion is a novel technique of solid dispersion for dispersing one or more active ingredients on a water insoluble carrier of high surface area in order to achieve increased dissolution rates and bioavailability of insoluble drugs. The Vvarious polymers used in this technique are Avicel, Crosspovidone, sSodium starch glycolate, pPregelatinized starch, Cab-o-sil, Ac-di-sol, KyronT-314, Primojel and pPotato sStarch. This article reviews the various methods of preparation and characterization of surface solid dispersion and compiles some of the drugs formulated as surface solid dispersions. Some of the practical aspects to be considered for preparing surface solid dispersion are selection of a suitable carrier and method of preparation of surface solid dispersion.


Author(s):  
Rajendra K. Surawase ◽  
Kamalkishor G. Baheti

Aim: The aim of this study was to study the solubility and dissolution kinetics of poorly water-soluble drugs simvastatin from its solid dispersion with different carriers by using fluidized bed processing technique. Methods: The effect of different surfactants such as Gelucire® 44/14, PVP- K30 and Poloxamer- 188 on solid dispersion dissolution and solubility of simvastatin was investigated. Solid dispersion is formed using various techniques with polymeric carrier to potentially enhance the solubility and dissolution rate such as fluidized bed processing, it will extend drug absorption, therefore the objectives were to make a comparative evaluation among different solid dispersions. Results: The simvastatin solid dispersion prepared by fluidized bed processing significantly enhanced in vitro dissolution and solubility relative to that of the unprocessed form. The dissolution profiles were correlated using various mathematical models such as Zero order, first order, Higuchi and Hixon Crowell model and the Zero order kinetics model gave better correlation results than the other models. Conclusion: Dissolution profile of simvastatin was significantly improved via complexation with Gelucire 44/14 as compared with the pure drug and other carriers using FBP processing is a highly effective strategy for enhancing the solubility and dissolution of poorly water-soluble drugs.


Sign in / Sign up

Export Citation Format

Share Document