Differences in two-dimensional gel electrophoresis patterns of skeletal muscle myosin light chain isoforms between Bos taurus, Sus scrofa and selected poultry species

2011 ◽  
Vol 91 (13) ◽  
pp. 2449-2456 ◽  
Author(s):  
Magdalena Montowska ◽  
Edward Pospiech
1985 ◽  
Vol 100 (6) ◽  
pp. 2025-2030 ◽  
Author(s):  
H Takano-Ohmuro ◽  
T Obinata ◽  
M Kawashima ◽  
T Masaki ◽  
T Tanaka

It has been demonstrated that embryonic chicken gizzard smooth muscle contains a unique embryonic myosin light chain of 23,000 mol wt, called L23 (Katoh, N., and S. Kubo, 1978, Biochem. Biophys. Acta, 535:401-411; Takano-Ohmuro, H., T. Obinata, T. Mikawa, and T. Masaki, 1983, J. Biochem. (Tokyo), 93:903-908). When we examined myosins in developing chicken ventricular and pectoralis muscles by two-dimensional gel electrophoresis, the myosin light chain (Le) that completely comigrates with L23 was detected in both striated muscles at early developmental stages. Two monoclonal antibodies, MT-53f and MT-185d, were applied to characterize the embryonic light chain Le of striated muscles. Both monoclonal antibodies were raised to fast skeletal muscle myosin light chains; the former antibody is specific to fast muscle myosin light chains 1 and 3, whereas the latter recognizes not only fast muscle myosin light chains but also the embryonic smooth muscle light chain L23. The immunoblots combined with both one- and two-dimensional gel electrophoresis showed that Le reacts with MT-185d but not with MT-53f. These results strongly indicate that Le is identical to L23 and that embryonic chicken skeletal, cardiac, and smooth muscles express a common embryo-specific myosin light chain.


Biochemistry ◽  
1983 ◽  
Vol 22 (18) ◽  
pp. 4316-4326 ◽  
Author(s):  
Georg W. Mayr ◽  
Ludwig M. G. Heilmeyer

1989 ◽  
Vol 256 (2) ◽  
pp. C399-C404 ◽  
Author(s):  
B. P. Herring ◽  
M. H. Nunnally ◽  
P. J. Gallagher ◽  
J. T. Stull

A 1.85-kilobase (kb) cDNA has been isolated that encodes the catalytic and calmodulin binding domains of rat skeletal muscle myosin light chain kinase. The cDNA hybridized to a 3.3-kb RNA present in fast- and slow-twitch skeletal muscles. The reported enzymatic activity (3-fold greater in fast- than slow-twitch skeletal muscles) reflects the relative abundance of this RNA in the two types of skeletal muscle. No hybridization of the cDNA was detected to RNA isolated from smooth or nonmuscle tissues. The clone cross hybridized to a 2.2-kb RNA present in cardiac tissue. Ribonuclease protection analysis of skeletal and cardiac muscle RNA revealed major differences in the two hybridizing RNAs. Thus rat skeletal muscle contains a single myosin light chain kinase isoform, which is distinct from the cardiac, smooth, and nonmuscle forms.


Sign in / Sign up

Export Citation Format

Share Document