Automated screening platform with isochronal-parallel analysis and conditioning for rapid method development of chiral separations

2007 ◽  
Vol 30 (9) ◽  
pp. 1255-1261 ◽  
Author(s):  
Herbert A. Wetli ◽  
Eric Francotte
2020 ◽  
Author(s):  
Alexandra Lubin ◽  
Jason Otterstrom ◽  
Yvette Hoade ◽  
Ivana Bjedov ◽  
Eleanor Stead ◽  
...  

AbstractZebrafish provide a unique opportunity for drug screening in living animals, with the fast developing, transparent embryos allowing for relatively high throughput, microscopy-based screens. However, the limited availability of rapid, flexible imaging and analysis platforms has limited the use of zebrafish in drug screens. We have developed a easy-to-use, customisable automated screening procedure suitable for high-throughput phenotype-based screens of live zebrafish. We utilised the WiScan®Hermes High Content Imaging System to rapidly acquire brightfield and fluorescent images of embryos, and the WiSoft®Athena Zebrafish Application for analysis, which harnesses an Artificial Intelligence-driven algorithm to automatically detect fish in brightfield images, identify anatomical structures, partition the animal into regions, and exclusively select the desired side-oriented fish. Our initial validation combined structural analysis with fluorescence images to enumerate GFP-tagged haematopoietic stem and progenitor cells in the tails of embryos, which correlated with manual counts. We further validated this system to assess the effects of genetic mutations and x-ray irradiation in high content using a wide range of assays. Further, we performed simultaneous analysis of multiple cell types using dual fluorophores in high throughput. In summary, we demonstrate a broadly applicable and rapidly customisable platform for high content screening in zebrafish.


2010 ◽  
Vol 2 (4) ◽  
pp. 375 ◽  
Author(s):  
Jian Wang ◽  
Anne-Francoise Aubry ◽  
Georgia Cornelius ◽  
Christian Caporuscio ◽  
Bogdan Sleczka ◽  
...  

2018 ◽  
Vol 24 (1) ◽  
pp. 57-67 ◽  
Author(s):  
Monica Salani ◽  
Fabio Urbina ◽  
Anthony Brenner ◽  
Elisabetta Morini ◽  
Ranjit Shetty ◽  
...  

Familial dysautonomia (FD) is an autonomic and sensory neuropathy caused by a mutation in the splice donor site of intron 20 of the ELP1 gene. Variable skipping of exon 20 leads to a tissue-specific reduction in the level of ELP1 protein. We have shown that the plant cytokinin kinetin is able to increase cellular ELP1 protein levels in vivo and in vitro through correction of ELP1 splicing. Studies in FD patients determined that kinetin is not a practical therapy due to low potency and rapid elimination. To identify molecules with improved potency and efficacy, we developed a cell-based luciferase splicing assay by inserting renilla (Rluc) and firefly (Fluc) luciferase reporters into our previously well-characterized ELP1 minigene construct. Evaluation of the Fluc/Rluc signal ratio enables a fast and accurate way to measure exon 20 inclusion. Further, we developed a secondary assay that measures ELP1 splicing in FD patient-derived fibroblasts. Here we demonstrate the quality and reproducibility of our screening method. Development and implementation of this screening platform has allowed us to efficiently screen for new compounds that robustly and specifically enhance ELP1 pre-mRNA splicing.


2002 ◽  
Vol 7 (5) ◽  
pp. 441-450 ◽  
Author(s):  
Kinji Fuchikami ◽  
Hiroko Togame ◽  
Atsuko Sagara ◽  
Tomoko Satoh ◽  
Florian Gantner ◽  
...  

The family of phosphoinositide 3-kinases (PI3K) regulates fundamental cellular responses such as proliferation, apoptosis, motility, and adhesion. In particular, the PI3K γ isoform plays a critical role in the control of cell migration. Despite the attractiveness of PI3-kinases as drug targets, drug discovery efforts have been hampered by the lack of appropriate lipid kinase assay formats suitable for high-throughput screening. The authors report the development of a simple and robust 384-well plate assay that is based on33 P-phosphate transfer from radiolabeled [γ33 P]ATP to phosphatidylinositol immobilized on Maxisorp™ plates. The established assay format for PI3K γ was easily adapted to the automated screening platform and was successfully employed for high-throughput screening. Enzymatic and inhibition characteristics of recombinant human PI3K γ determined with the plate assay are in very good agreement with previously reported values determined in other assay formats. Maximal catalytic activity of PI3K γ was observed at pH 7.0. The apparent Km value for ATP using a 1:1 mixture of phosphatidylinositol and phosphatidylserine was determined to be 7.3μM (6.0-8.6 μM, 95% confidence interval [CI]). IC50 values for known PI3-kinase inhibitors were determined to be 1.45 nM (1.17-1.80 nM, 95% CI) for wortmannin and estimated from partial inhibition data to be 1400, 2830, and 21,400 nM for quercetin, LY294002, and staurosporine, respectively. This novel assay approach allows for screening of inhibitors of lipid kinases in high-throughput mode and thereby may facilitate the identification of novel inhibitory structures for drug development.


Sign in / Sign up

Export Citation Format

Share Document