scholarly journals A versatile automated high-throughput drug screening platform for zebrafish embryos

2020 ◽  
Author(s):  
Alexandra Lubin ◽  
Jason Otterstrom ◽  
Yvette Hoade ◽  
Ivana Bjedov ◽  
Eleanor Stead ◽  
...  

AbstractZebrafish provide a unique opportunity for drug screening in living animals, with the fast developing, transparent embryos allowing for relatively high throughput, microscopy-based screens. However, the limited availability of rapid, flexible imaging and analysis platforms has limited the use of zebrafish in drug screens. We have developed a easy-to-use, customisable automated screening procedure suitable for high-throughput phenotype-based screens of live zebrafish. We utilised the WiScan®Hermes High Content Imaging System to rapidly acquire brightfield and fluorescent images of embryos, and the WiSoft®Athena Zebrafish Application for analysis, which harnesses an Artificial Intelligence-driven algorithm to automatically detect fish in brightfield images, identify anatomical structures, partition the animal into regions, and exclusively select the desired side-oriented fish. Our initial validation combined structural analysis with fluorescence images to enumerate GFP-tagged haematopoietic stem and progenitor cells in the tails of embryos, which correlated with manual counts. We further validated this system to assess the effects of genetic mutations and x-ray irradiation in high content using a wide range of assays. Further, we performed simultaneous analysis of multiple cell types using dual fluorophores in high throughput. In summary, we demonstrate a broadly applicable and rapidly customisable platform for high content screening in zebrafish.

Biology Open ◽  
2021 ◽  
Author(s):  
Alexandra Lubin ◽  
Jason Otterstrom ◽  
Yvette Hoade ◽  
Ivana Bjedov ◽  
Eleanor Stead ◽  
...  

Zebrafish provide a unique opportunity for drug screening in living animals, with the fast developing, transparent embryos allowing for relatively high-throughput, microscopy-based screens. However, the limited availability of rapid, flexible imaging and analysis platforms has limited the use of zebrafish in drug screens. We have developed an easy-to-use, customisable automated screening procedure suitable for high-throughput phenotype-based screens of live zebrafish. We utilised the WiScan® Hermes High Content Imaging System to rapidly acquire brightfield and fluorescent images of embryos, and the WiSoft® Athena Zebrafish Application for analysis, which harnesses an Artificial Intelligence-driven algorithm to automatically detect fish in brightfield images, identify anatomical structures, partition the animal into regions, and exclusively select the desired side-oriented fish. Our initial validation combined structural analysis with fluorescence images to enumerate GFP-tagged haematopoietic stem and progenitor cells in the tails of embryos, which correlated with manual counts. We further validated this system to assess the effects of genetic mutations and x-ray irradiation in high content using a wide range of assays. Further, we performed simultaneous analysis of multiple cell types using dual fluorophores in high throughput. In summary, we demonstrate a broadly applicable and rapidly customisable platform for high-content screening in zebrafish.


2014 ◽  
Vol 59 (2) ◽  
pp. 753-762 ◽  
Author(s):  
Anita Ordas ◽  
Robert-Jan Raterink ◽  
Fraser Cunningham ◽  
Hans J. Jansen ◽  
Malgorzata I. Wiweger ◽  
...  

ABSTRACTThe translational value of zebrafish high-throughput screens can be improved when more knowledge is available on uptake characteristics of potential drugs. We investigated reference antibiotics and 15 preclinical compounds in a translational zebrafish-rodent screening system for tuberculosis. As a major advance, we have developed a new tool for testing drug uptake in the zebrafish model. This is important, because despite the many applications of assessing drug efficacy in zebrafish research, the current methods for measuring uptake using mass spectrometry do not take into account the possible adherence of drugs to the larval surface. Our approach combines nanoliter sampling from the yolk using a microneedle, followed by mass spectrometric analysis. To date, no single physicochemical property has been identified to accurately predict compound uptake; our method offers a great possibility to monitor how any novel compound behaves within the system. We have correlated the uptake data with high-throughput drug-screening data fromMycobacterium marinum-infected zebrafish larvae. As a result, we present an improved zebrafish larva drug-screening platform which offers new insights into drug efficacy and identifies potential false negatives and drugs that are effective in zebrafish and rodents. We demonstrate that this improved zebrafish drug-screening platform can complement conventional models ofin vivoMycobacterium tuberculosis-infected rodent assays. The detailed comparison of two vertebrate systems, fish and rodent, may give more predictive value for efficacy of drugs in humans.


Blood ◽  
2020 ◽  
Vol 136 (20) ◽  
pp. 2296-2307 ◽  
Author(s):  
Konstantinos D. Kokkaliaris ◽  
Leo Kunz ◽  
Nina Cabezas-Wallscheid ◽  
Constantina Christodoulou ◽  
Simon Renders ◽  
...  

Abstract The exact localization of hematopoietic stem cells (HSCs) in their native bone marrow (BM) microenvironment remains controversial, because multiple cell types have been reported to physically associate with HSCs. In this study, we comprehensively quantified HSC localization with up to 4 simultaneous (9 total) BM components in 152 full-bone sections from different bone types and 3 HSC reporter lines. We found adult femoral α-catulin-GFP+ or Mds1GFP/+Flt3Cre HSCs proximal to sinusoids, Cxcl12 stroma, megakaryocytes, and different combinations of those populations, but not proximal to bone, adipocyte, periarteriolar, or Schwann cells. Despite microanatomical differences in femurs and sterna, their adult α-catulin-GFP+ HSCs had similar distributions. Importantly, their microenvironmental localizations were not different from those of random dots, reflecting the relative abundance of imaged BM populations rather than active enrichment. Despite their functional heterogeneity, dormant label-retaining (LR) and non-LR hematopoietic stem and progenitor cells both had indistinguishable localization from α-catulin-GFP+ HSCs. In contrast, cycling juvenile BM HSCs preferentially located close to Cxcl12 stroma and farther from sinusoids/megakaryocytes. We expect our study to help resolve existing confusion regarding the exact localization of different HSC types, their physical association with described BM populations, and their tissue-wide combinations.


Author(s):  
Hallie A. Swan ◽  
Rachele Rosati ◽  
Caroline Bridgwater ◽  
Michael J. Churchill ◽  
Roland M. Watt ◽  
...  

2019 ◽  
Author(s):  
Tamar Tak ◽  
Giulio Prevedello ◽  
Gaël Simon ◽  
Noémie Paillon ◽  
Ken R. Duffy ◽  
...  

AbstractThe advent of high throughput single cell methods such as scRNA-seq has uncovered substantial heterogeneity in the pool of hematopoietic stem and progenitor cells (HSPCs). A significant issue is how to reconcile those findings with the standard model of hematopoietic development, and a fundamental question is how much instruction is inherited by offspring from their ancestors. To address this, we further developed a high-throughput method that enables simultaneously determination of common ancestor, generation, and differentiation status of a large collection of single cells. Data from it revealed that while there is substantial population-level heterogeneity, cells that derived from a common ancestor were highly concordant in their division progression and share similar differentiation outcomes, revealing significant familial effects on both division and differentiation. Although each family diversifies to some extent, the overall collection of cell types observed in a population is largely composed of homogeneous families from heterogeneous ancestors. Heterogeneity between families could be explained, in part, by differences in ancestral expression of cell-surface markers that are used for phenotypic HSPC identification: CD48, SCA-1, c-kit and Flt3. These data call for a revision of the fundamental model of haematopoiesis from a single tree to an ensemble of trees from distinct ancestors where common ancestor effect must be considered. As HSPCs are cultured in the clinic before bone marrow transplantation, our results suggest that the broad range of engraftment and proliferation capacities of HSPCs could be consequences of the heterogeneity in their engrafted families, and altered culture conditions might reduce heterogeneity between families, possibly improving transplantation outcomes.


2021 ◽  
Vol 17 (9) ◽  
pp. e1009422
Author(s):  
M. Shahriar Karim ◽  
Aasakiran Madamanchi ◽  
James A. Dutko ◽  
Mary C. Mullins ◽  
David M. Umulis

Numerous stages of organismal development rely on the cellular interpretation of gradients of secreted morphogens including members of the Bone Morphogenetic Protein (BMP) family through transmembrane receptors. Early gradients of BMPs drive dorsal/ventral patterning throughout the animal kingdom in both vertebrates and invertebrates. Growing evidence in Drosophila, zebrafish, murine and other systems suggests that BMP ligand heterodimers are the primary BMP signaling ligand, even in systems in which mixtures of BMP homodimers and heterodimers are present. Signaling by heterodimers occurs through a hetero-tetrameric receptor complex comprising of two distinct type one BMP receptors and two type II receptors. To understand the system dynamics and determine whether kinetic assembly of heterodimer-heterotetramer BMP complexes is favored, as compared to other plausible BMP ligand-receptor configurations, we developed a kinetic model for BMP tetramer formation based on current measurements for binding rates and affinities. We find that contrary to a common hypothesis, heterodimer-heterotetramer formation is not kinetically favored over the formation of homodimer-tetramer complexes under physiological conditions of receptor and ligand concentrations and therefore other mechanisms, potentially including differential kinase activities of the formed heterotetramer complexes, must be the cause of heterodimer-heterotetramer signaling primacy. Further, although BMP complex assembly favors homodimer and homomeric complex formation over a wide range of parameters, ignoring these signals and instead relying on the heterodimer improves the range of morphogen interpretation in a broad set of conditions, suggesting a performance advantage for heterodimer signaling in patterning multiple cell types in a gradient.


2009 ◽  
Vol 14 (6) ◽  
pp. 668-678 ◽  
Author(s):  
Sumitra M. Sukumaran ◽  
Benjamin Potsaid ◽  
Moo-Yeal Lee ◽  
Douglas S. Clark ◽  
Jonathan S. Dordick

Cytochrome P450 enzyme (CYP450s) assays are critical enzymes in early-stage lead discovery and optimization in drug development. Currently available fluorescence-based reaction assays provide a rapid and reliable method for monitoring CYP450 enzyme activity but are confined to medium-throughput well-plate systems. The authors present a high-throughput, integrated screening platform for CYP450 assays combining enzyme encapsulation techniques, microarraying methods, and wide-field imaging. Alginate-containing microarrays consisting of up to 1134 CYP450 reaction elements were fabricated on functionalized glass slides (reaction volumes 20 to 80 nL, total enzyme content in pg) and imaged to yield endpoint activity, stability, and kinetic data. A charge-coupled device imager acquired quantitative, high-resolution images of a 20 × 20 mm area/snapshot using custom-built wide-field optics with telecentric lenses and easily interchangeable filter sets. The imaging system offered a broad dynamic intensity range (linear over 3 orders of magnitude) and sensitivity down to fluorochrome quantities of <5 fmols, with read accuracy similar to a laser scanner or a fluorescence plate reader but with higher throughput. Rapid image acquisition enabled analysis of CYP450 kinetics. Fluorogenic assays with CYP3A4, CYP2C9, and CYP2D6 on the alginate microarrays exhibited Z′ factors ranging from 0.75 to 0.85, sensitive detection of inhibitory compounds, and reactivity comparable to that in solution, thereby demonstrating the reliability and accuracy of the microarray platform. This system enables for the first time a significant miniaturization of CYP enzyme assays with significant conservation of assay reagents, greatly increased throughput, and no apparent loss of enzyme activity or assay sensitivity. ( Journal of Biomolecular Screening 2009:668-678)


2021 ◽  
Vol 12 ◽  
pp. 204173142098520
Author(s):  
Justine Creff ◽  
Laurent Malaquin ◽  
Arnaud Besson

The intestinal epithelium, the fastest renewing tissue in human, is a complex tissue hosting multiple cell types with a dynamic and multiparametric microenvironment, making it particularly challenging to recreate in vitro. Convergence of recent advances in cellular biology and microfabrication technologies have led to the development of various bioengineered systems to model and study the intestinal epithelium. Theses microfabricated in vitro models may constitute an alternative to current approaches for studying the fundamental mechanisms governing intestinal homeostasis and pathologies, as well as for in vitro drug screening and testing. Herein, we review the recent advances in bioengineered in vitro intestinal models.


Sign in / Sign up

Export Citation Format

Share Document