Degraded land restoration ecological way through horti‐pasture systems and soil moisture conservation to sustain productive economic viability

2019 ◽  
Vol 30 (12) ◽  
pp. 1516-1529 ◽  
Author(s):  
Sunil Kumar ◽  
Amit Kumar Singh ◽  
Ramesh Singh ◽  
Avijit Ghosh ◽  
Manoj Chaudhary ◽  
...  
2020 ◽  
pp. 37-43
Author(s):  
B.I. KORZHENEVSKIY ◽  
◽  
N.V. KOLOMIYTSEV ◽  
G.YU. TOLKACHEV

Putting out of using large areas of agricultural lands in the central region over the past years has led to worsening the prospects of their purposed use, although the problem of the relevance of their restoration still remains. For many years the unused land was exposed to both natural exogenous processes such as erosion, suffusion, etc. and biological and chemical changes, usually for the worse for agriculture. There are considered elements of monitoring aimed at assessing the prospects or lack of perspectives of rehabilitation of degraded lands. An energy approach to assessing the state of slopes and soils located within these slopes is presented. The main factors of natural and anthropogenic character in assessing the prospects for land restoration are their steepness, excess relative to local bases of erosion other morphological characteristics of slopes which in general is reduced to an assessment of the energy provision of slopes and soils. So the higher the energy capacity of slopes – they are less promising for development, for soils – there is a reverse picture – the higher their energy reserves, the more promising is their use. Approaches to zoning the territory for monitoring from larger taxons of natural and anthropogenic genesis to the sites of special surveillance within which the prospects for rehabilitation of the agricultural land are evaluated. The most important factor is the material expediency of such actions, i.e. before starting the restoration work it is necessary to assess the profitability or loss of the proposed event. In cases of the material expediency it is feasible as further actions to include energy assessments of slopes and soils; zoning of the object according to the steepness and oriented characteristics of soil washout; and the possibility of obtaining agronomic and meteorological data on a timely basis. The result of the work is a forecast assessment of the prospects for restoring degraded land for the intended purpose using modern databases and WEB-systems.


2021 ◽  
Author(s):  
Lulu Che ◽  
Dongdong Liu ◽  
Dongli She

Abstract AimsSoil water deficit in karst mountain lands is becoming an issue of concern owing to porous, fissured, and soluble nature of underlying karst bedrock. It is important to identify feasible methods to facilitate soil water preservation in karst mountainous lands. This study aims to seek the possibility of combined utilization of moss colonization and biochar application to reduce evaporation losses in carbonate-derived laterite.MethodsThe treatments of the experiments at micro-lysimeter included four moss spore amounts (0, 30, 60, and 90 g·m−2) and four biochar application levels (0, 100, 400, and 700 g·m−3). The dynamics of moss coverage, characteristics of soil surface cracks and surface temperature field were identified. An empirical evaporation model considering the interactive effects of moss colonization and biochar application was proposed and assessed.ResultsMoss colonization reduced significantly the ratio of soil desiccation cracks. Relative cumulative evaporation decreased linearly with increasing moss coverage under four biochar application levels. Biochar application reduced critical moss coverage associated with inhibition of evaporation by 33.26%-44.34%. The empirical evaporation model enabled the calculation of soil evaporation losses under moss colonization and biochar application, with the R2 values ranging from 0.94 to 0.99.Conclusions Our result showed that the artificially cultivated moss, which was induced by moss spores and biochar, decreased soil evaporation by reducing soil surface cracks, increasing soil moisture and soil surface temperature.Moss colonization and biochar application has the potential to facilitate soil moisture conservation in karst mountain lands.


Land ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 63 ◽  
Author(s):  
Sheikh Adil Edrisi ◽  
Vishal Tripathi ◽  
Purushothaman Chirakkuzhyil Abhilash

The successful utilization of marginal and degraded lands for biomass and bioenergy production depends upon various factors such as climatic conditions, the adaptive traits of the tree species and their growth rate and respective belowground responses. The present study was undertaken to evaluate the growth performance of a bioenergy tree (Dalbergia sissoo Roxb.) grown in marginal and degraded land of the Mirzapur district of Uttar Pradesh, India and to analyze the effect of D. sissoo plantations on soil quality improvement over the study years. For this, a soil quality index (SQI) was developed based on principal component analysis (PCA) to understand the effect of D. sissoo plantations on belowground responses. PCA results showed that among the studied soil variables, bulk density (BD), moisture content (MC), microbial biomass carbon (MBC) and soil urease activity (SUA) are the key variables critically influencing the growth of D. sissoo. The SQI was found in an increasing order with the growth period of D. sissoo. (i.e., from 0.419 during the first year to 0.579 in the fourth year). A strong correlation was also observed between the growth attributes (diameter at breast height, R2 = 0.870; and plant height, R2 = 0.861) and the soil quality (p < 0.01). Therefore, the developed SQI can be used as key indicator for monitoring the restoration potential of D. sissoo growing in marginal and degraded lands and also for adopting suitable interventions to further improve soil quality for multipurpose land restoration programs, thereby attaining land degradation neutrality and United Nations Sustainable Development Goals.


2018 ◽  
Vol 10 (12) ◽  
pp. 4367 ◽  
Author(s):  
Roshan Sharma ◽  
Jaya Wahono ◽  
Himlal Baral

The energy demand in Indonesia has increased significantly with its population growth, urbanization, and economic development. The growing concern of meeting energy demand while reducing dependency on fossil fuels has resulted in an increasing demand for renewable energy. As a country with a rich biomass base, bioenergy is now an important component of Indonesia’s energy agenda. However, a crucial problem in bioenergy production is the selection of species that can provide a sustainable supply of feedstock without having an impact on food security and the environment. In this context, we discuss the characteristics and benefits of using bamboo, a perennial grass, as a potential species for bioenergy feedstock in Indonesia. We describe the fuel characteristics of bamboo along with the possibility to align its cultivation, production, and usage with environmental and developmental agendas which makes it a suitable bioenergy crop in the country. In addition, its ability to grow on degraded lands, fast growth, long root system, and easy maintenance prove it as a powerful ally for the restoration of degraded land. We recommend in-depth research on the social, ecological, and economic feasibility of using this species for bioenergy production.


Sign in / Sign up

Export Citation Format

Share Document