Giant Nonlinear Response of Monolayer MoS 2 Induced by Optimal Field‐Enhancement Gain Mode on the Surface of Hyperbolic Metamaterials

2021 ◽  
pp. 2100281
Author(s):  
Zhang‐Kai Zhou ◽  
Hao‐Fei Xu ◽  
Ying Yu ◽  
Limin Lin ◽  
Xue‐Hua Wang
2012 ◽  
Vol 37 (14) ◽  
pp. 2907 ◽  
Author(s):  
Yingran He ◽  
Sailing He ◽  
Xiaodong Yang

2021 ◽  
Vol 2015 (1) ◽  
pp. 012098
Author(s):  
Vladimir Novikov

Abstract Optical properties of hyperbolic metamaterials (HMMs) are in stark contrast to properties of ordinary media that fuels interest to various applications of HMMs in photonics. Special attention is attributed to the epsilon-near zero regime (ENZ) of HMMs that is the spectral point in which real part of the permittivity of the HMM becomes zero. This is accompanied by the effects of field enhancement having far-reaching applications. Here we focus on the experimental and theoretical investigation of the propagation of an ultrashort laser pulse through the silver nanorod-based HMM slab in the spectral range over the ENZ. We revealed pronounced resonant change of the pulse delay in HMMs and the transition between the superluminal and slow pulse propagation at the ENZ spectral point. Observed dynamical phenomena are confirmed theoretically and attributed to unusual case when the spectral half of an ultrashort pulse has elliptical dispersion and another has the hyperbolic one. Special attention is payed to the propagation of chirped laser pulses in the HMMs.


2019 ◽  
Vol 9 (12) ◽  
pp. 2524 ◽  
Author(s):  
Cong Cheng ◽  
Wei Chen ◽  
Yuanfu Lu ◽  
Fangming Ruan ◽  
Guangyuan Li

Terahertz antennas can greatly enhance the near fields and enable strong light–matter interactions, and thus have been widely used in applications such as terahertz sensing and detection. Here we propose a novel approach to further enhance the near fields in terahertz antennas. We show that by sandwiching hyperbolic metamaterials that are composed of InSb and SiO 2 multilayer and that are dressed with hole arrays, between a terahertz dipole antenna and the substrate, the near-field electric field intensities in the antenna can be further enhanced by more than three times. Simulations reveal that this enhancement originates from the doubly enhanced in-plane electric field component and the significantly enhanced out-of-plane electric field component. We expect this work will advance the design of terahertz antennas that are widely used in sensors and detectors.


2020 ◽  
Vol 238 ◽  
pp. 11001
Author(s):  
Tiziana Cesca ◽  
Domenico Genchi ◽  
Raul Rangel-Rojo ◽  
Jorge A. Reyes-Esqueda ◽  
Giovanni Mattei

Nanostructured materials with tunable nonlinear optical response are of great interest for different applications in nanophotonics. In this work we report the results of a comprehensive study on the nonlinear optical properties of two kinds of plasmonic metamaterials, i.e., honeycomb nanoprism arrays and multilayer hyperbolic metamaterials, which proved to have a very rich spectrum of parameters (as metamaterials morphology and composition, wavelength and polarization of an input beam) to exploit for controlling their nonlinear response over a broad spectral range.


Nanophotonics ◽  
2012 ◽  
Vol 1 (3-4) ◽  
pp. 221-233 ◽  
Author(s):  
Pai-Yen Chen ◽  
Christos Argyropoulos ◽  
Andrea Alù

AbstractIn this paper, we review and discuss how nanoantennas may be used to largely enhance the nonlinear response of optical materials. For single nanoantennas, there have been tremendous advancements in understanding how to exploit the local field enhancement to boost the nonlinear susceptibility at the surface or sharp edges of plasmonic metals. After an overview of the work in this area, we discuss the possibility of controlling the optical nonlinear response using nanocircuit concepts and of significantly enhancing various nonlinear optical processes using planar arrays of plasmonic nanoantennas loaded with χ(2) or χ(3) nonlinear optical materials, forming ultrathin, nanometer-scale nonlinear metasurfaces, as optical nanodevices. We describe how this concept may be used to boost the efficiency of nonlinear wave mixing and optical bistability, due to the large local field enhancement at the nonlinear nanoloads associated with the plasmonic features of suitably tailored nanoantenna designs. We finally discuss three exciting applications of the proposed nonlinear metasurface: dramatically-enhanced frequency conversion efficiency, efficient phase-conjugation for super-resolution imaging and large optical bistabilities.


2003 ◽  
Vol 771 ◽  
Author(s):  
M. Kemerink ◽  
S.F. Alvarado ◽  
P.M. Koenraad ◽  
R.A.J. Janssen ◽  
H.W.M. Salemink ◽  
...  

AbstractScanning-tunneling spectroscopy experiments have been performed on conjugated polymer films and have been compared to a three-dimensional numerical model for charge injection and transport. It is found that field enhancement near the tip apex leads to significant changes in the injected current, which can amount to more than an order of magnitude, and can even change the polarity of the dominant charge carrier. As a direct consequence, the single-particle band gap and band alignment of the organic material can be directly obtained from tip height-voltage (z-V) curves, provided that the tip has a sufficiently sharp apex.


AIAA Journal ◽  
2000 ◽  
Vol 38 ◽  
pp. 1543-1557 ◽  
Author(s):  
Deman Tang ◽  
Denis Kholodar ◽  
Earl H. Dowell

AIAA Journal ◽  
2001 ◽  
Vol 39 ◽  
pp. 962-965
Author(s):  
Abdulmuhsen H. Ali

Sign in / Sign up

Export Citation Format

Share Document