Suppression of Cell and Platelet Adhesion to Star-Shaped 8-Armed Poly(ethylene glycol)-Poly(L -lactide) Block Copolymer Films

2006 ◽  
Vol 6 (6) ◽  
pp. 412-419 ◽  
Author(s):  
Koji Nagahama ◽  
Yuichi Ohya ◽  
Tatsuro Ouchi
2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Xueli Mao ◽  
Zetao Chen ◽  
Junqi Ling ◽  
Jingjing Quan ◽  
Hui Peng ◽  
...  

Poly(l-lactide) (PLLA), a versatile biodegradable polymer, is one of the most commonly-used materials for tissue engineering applications. To improve cell affinity for PLLA, poly(ethylene glycol) (PEG) was used to develop diblock copolymers. Human bone marrow stromal cells (hBMSCs) were cultured on MPEG-b-PLLA copolymer films to determine the effects of modification on the attachment and proliferation of hBMSC. The mRNA expression of 84 human extracellular matrix (ECM) and adhesion molecules was analyzed using RT-qPCR to understand the underlying mechanisms. It was found that MPEG-b-PLLA copolymer films significantly improved cell adhesion, extension, and proliferation. This was found to be related to the significant upregulation of two adhesion genes, CDH1 and CTNND2, which encode 1-cadherin and delta-2-catenin, respectively, two key components for the cadherin-catenin complex. In summary, MPEG-b-PLLA copolymer surfaces improved initial cell adhesion by stimulation of adhesion molecule gene expression.


2018 ◽  
Vol 47 (3) ◽  
pp. 426-432 ◽  
Author(s):  
Sivan Yogev ◽  
Ayelet Shabtay-Orbach ◽  
Abraham Nyska ◽  
Boaz Mizrahi

Thermoresponsive materials have the ability to respond to a small change in temperature—a property that makes them useful in a wide range of applications and medical devices. Although very promising, there is only little conclusive data about the cytotoxicity and tissue toxicity of these materials. This work studied the biocompatibility of three Food and Drug Administration approved thermoresponsive polymers: poly( N-isopropyl acrylamide), poly(ethylene glycol)-poly(propylene glycol)-poly(ethylene glycol) tri-block copolymer, and poly(lactic acid-co-glycolic acid) and poly(ethylene glycol) tri-block copolymer. Fibroblast NIH 3T3 and HaCaT keratinocyte cells were used for the cytotoxicity testing and a mouse model for the in vivo evaluation. In vivo results generally showed similar trends as the results seen in vitro, with all tested materials presenting a satisfactory biocompatibility in vivo. pNIPAM, however, showed the highest toxicity both in vitro and in vivo, which was explained by the release of harmful monomers and impurities. More data focusing on the biocompatibility of novel thermoresponsive biomaterials will facilitate the use of existing and future medical devices.


2014 ◽  
Vol 38 (8) ◽  
pp. 3569-3578 ◽  
Author(s):  
Xiao-Hui Dai ◽  
Zhi-Ming Wang ◽  
Lu-You Gao ◽  
Jian-Ming Pan ◽  
Xiao-Hong Wang ◽  
...  

pH-induced block copolymer SPPLA-b-PEG with porphyrin core for photodynamic therapy.


2016 ◽  
Vol 49 (10) ◽  
pp. 3789-3798 ◽  
Author(s):  
Chengqiang Gao ◽  
Heng Zhou ◽  
Yaqing Qu ◽  
Wei Wang ◽  
Habib Khan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document