scholarly journals Numerical Study of Residual Stresses Due to External Cooling in Extruded Polymer Profiles

2021 ◽  
pp. 2100074
Author(s):  
Michelle M. A. Spanjaards ◽  
Martien A. Hulsen ◽  
Patrick D. Anderson
Author(s):  
Kunyang Lin ◽  
Wenhu Wang ◽  
Ruisong Jiang ◽  
Yifeng Xiong

Machining induced residual stresses have an important effect on the surface integrity. Effects of various factors on the distribution of residual stress profiles induced by different machining processes have been investigated by many researchers. However, the initial residual, as one of the important factor that affect the residual stress profile, is always been ignored. In this paper, the residual stress field induced by the quenching process is simulated by the FEM software as the initial condition. Then the initial residual stress field is used to study the residual stress redistribution after the machining process. The influence of initial stress on the stress formation is carried out illustrating with the mechanical and thermal loads during machining processes. The effects of cutting speed on the distribution of residual stress profile are also discussed. These results are helpful to understand how initial residual stresses are redistributed during machining better. Furthermore, the results in the numerical study can be used to explain the machining distortion problem caused by residual stress in the further work.


2014 ◽  
Vol 996 ◽  
pp. 506-511
Author(s):  
Intissar Frih ◽  
Pierre Antoine Adragna ◽  
Guillaume Montay

This paper presents a study on the application of the finite element methods to predict the influence of a defect on the residual stress distribution in a T-welded structure. A defect is introduced in a numerical model firstly without residual stress to see its impact (size and position) on the stress distribution. Secondly the most critical defect (determined previously) is simulated with a residual stress gradient. The obtained results are useful for computation stress concentration factor due to weld residual stresses.


Author(s):  
Hossein Heidary ◽  
Mohsen Sadri ◽  
Navid Zarif Karimi ◽  
Cristiano Fragassa

Author(s):  
S. Hossain ◽  
C. E. Truman ◽  
D. J. Smith ◽  
M. R. Daymond

This paper presents results from an experimental and numerical study examining the creation of highly triaxial residual stresses in stainless steel. This was motivated by a need to model and understand creep in aged power plant. The residual stresses were introduced by rapid spray water quenching of heated solid stainless steel spheres and cylinders. Finite element (FE) simulations predicted high compressive residual stresses around the surface of the specimens and tensile residual stresses near the centre. Surface residual stresses were measured using the incremental centre-hole drilling (ICHD) technique. Neutron diffraction (ND) was used to measure the interior residual stresses. The measurements were in good agreement with FE predictions. The ND measurements confirmed that a highly triaxial residual stress state existed in the core of the specimens.


Sign in / Sign up

Export Citation Format

Share Document