Molecular Energies Derived from Deep Learning: Application to the Prediction of Formation Enthalpies Up to High Energy Compounds

2021 ◽  
pp. 2100064
Author(s):  
Didier Mathieu
2018 ◽  
Vol 68 (1) ◽  
pp. 161-181 ◽  
Author(s):  
Dan Guest ◽  
Kyle Cranmer ◽  
Daniel Whiteson

Machine learning has played an important role in the analysis of high-energy physics data for decades. The emergence of deep learning in 2012 allowed for machine learning tools which could adeptly handle higher-dimensional and more complex problems than previously feasible. This review is aimed at the reader who is familiar with high-energy physics but not machine learning. The connections between machine learning and high-energy physics data analysis are explored, followed by an introduction to the core concepts of neural networks, examples of the key results demonstrating the power of deep learning for analysis of LHC data, and discussion of future prospects and concerns.


2020 ◽  
pp. 1042-1057
Author(s):  
Xiaojing Hou ◽  
Guozeng Zhao

With the wide application of the cloud computing, the contradiction between high energy cost and low efficiency becomes increasingly prominent. In this article, to solve the problem of energy consumption, a resource scheduling and load balancing fusion algorithm with deep learning strategy is presented. Compared with the corresponding evolutionary algorithms, the proposed algorithm can enhance the diversity of the population, avoid the prematurity to some extent, and have a faster convergence speed. The experimental results show that the proposed algorithm has the most optimal ability of reducing energy consumption of data centers.


Author(s):  
Xiaojing Hou ◽  
Guozeng Zhao

With the wide application of the cloud computing, the contradiction between high energy cost and low efficiency becomes increasingly prominent. In this article, to solve the problem of energy consumption, a resource scheduling and load balancing fusion algorithm with deep learning strategy is presented. Compared with the corresponding evolutionary algorithms, the proposed algorithm can enhance the diversity of the population, avoid the prematurity to some extent, and have a faster convergence speed. The experimental results show that the proposed algorithm has the most optimal ability of reducing energy consumption of data centers.


IUCrJ ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Zhengchun Liu ◽  
Hemant Sharma ◽  
Jun-Sang Park ◽  
Peter Kenesei ◽  
Antonino Miceli ◽  
...  

X-ray diffraction based microscopy techniques such as high-energy diffraction microscopy (HEDM) rely on knowledge of the position of diffraction peaks with high precision. These positions are typically computed by fitting the observed intensities in detector data to a theoretical peak shape such as pseudo-Voigt. As experiments become more complex and detector technologies evolve, the computational cost of such peak-shape fitting becomes the biggest hurdle to the rapid analysis required for real-time feedback in experiments. To this end, we propose BraggNN, a deep-learning based method that can determine peak positions much more rapidly than conventional pseudo-Voigt peak fitting. When applied to a test dataset, peak center-of-mass positions obtained from BraggNN deviate less than 0.29 and 0.57 pixels for 75 and 95% of the peaks, respectively, from positions obtained using conventional pseudo-Voigt fitting (Euclidean distance). When applied to a real experimental dataset and using grain positions from near-field HEDM reconstruction as ground-truth, grain positions using BraggNN result in 15% smaller errors compared with those calculated using pseudo-Voigt. Recent advances in deep-learning method implementations and special-purpose model inference accelerators allow BraggNN to deliver enormous performance improvements relative to the conventional method, running, for example, more than 200 times faster on a consumer-class GPU card with out-of-the-box software.


2021 ◽  
Vol 2 (3) ◽  
pp. 035005
Author(s):  
Jeffrey Krupa ◽  
Kelvin Lin ◽  
Maria Acosta Flechas ◽  
Jack Dinsmore ◽  
Javier Duarte ◽  
...  

2021 ◽  
Vol 251 ◽  
pp. 03057
Author(s):  
Michael Andrews ◽  
Bjorn Burkle ◽  
Shravan Chaudhari ◽  
Davide Di Croce ◽  
Sergei Gleyzer ◽  
...  

Machine learning algorithms are gaining ground in high energy physics for applications in particle and event identification, physics analysis, detector reconstruction, simulation and trigger. Currently, most data-analysis tasks at LHC experiments benefit from the use of machine learning. Incorporating these computational tools in the experimental framework presents new challenges. This paper reports on the implementation of the end-to-end deep learning with the CMS software framework and the scaling of the end-to-end deep learning with multiple GPUs. The end-to-end deep learning technique combines deep learning algorithms and low-level detector representation for particle and event identification. We demonstrate the end-to-end implementation on a top quark benchmark and perform studies with various hardware architectures including single and multiple GPUs and Google TPU.


2019 ◽  
Vol 214 ◽  
pp. 06017 ◽  
Author(s):  
Celia Fernández Madrazo ◽  
Ignacio Heredia ◽  
Lara Lloret ◽  
Jesús Marco de Lucas

The application of deep learning techniques using convolutional neural networks for the classification of particle collisions in High Energy Physics is explored. An intuitive approach to transform physical variables, like momenta of particles and jets, into a single image that captures the relevant information, is proposed. The idea is tested using a well-known deep learning framework on a simulation dataset, including leptonic ttbar events and the corresponding background at 7 TeV from the CMS experiment at LHC, available as Open Data. This initial test shows competitive results when compared to more classical approaches, like those using feedforward neural networks.


2019 ◽  
Vol 71 (8) ◽  
pp. 955 ◽  
Author(s):  
Murat Abdughani ◽  
Jie Ren ◽  
Lei Wu ◽  
Jin-Min Yang ◽  
Jun Zhao
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document