A highly accurate numerical method for solving nonlinear time‐fractional differential difference equation

Author(s):  
Muhammad Khalid ◽  
Fareeha Sami Khan ◽  
Mariam Sultana
2016 ◽  
Vol 8 (2) ◽  
pp. 293-305 ◽  
Author(s):  
Ahmet Bekir ◽  
Ozkan Guner ◽  
Burcu Ayhan ◽  
Adem C. Cevikel

AbstractIn this paper, the (G'/G)-expansion method is suggested to establish new exact solutions for fractional differential-difference equations in the sense of modified Riemann-Liouville derivative. The fractional complex transform is proposed to convert a fractional partial differential difference equation into its differential difference equation of integer order. With the aid of symbolic computation, we choose nonlinear lattice equations to illustrate the validity and advantages of the algorithm. It is shown that the proposed algorithm is effective and can be used for many other nonlinear lattice equations in mathematical physics and applied mathematics.


2015 ◽  
Vol 7 (2) ◽  
pp. 186-199 ◽  
Author(s):  
Najeeb Alam Khan ◽  
Fatima Riaz

Abstract In this paper, we examine the fractional differential-difference equation (FDDE) by employing the proposed sensitivity approach (SA) and Adomian transformation method (ADTM). In SA the nonlinear differential-difference equation is converted to infinite linear equations which have a wide criterion to solve for the analytical solution. By ADTM, the FDDE is converted into ordinary differential-difference equation that can be solved. We test both the techniques through some test problems which are arising in nonlinear dynamical systems and found that ADTM is equivalently appropriate and simpler method to handle than SA.


Sign in / Sign up

Export Citation Format

Share Document