scholarly journals The Lab4P Consortium of Probiotics Attenuates Atherosclerosis in LDL Receptor Deficient Mice Fed a High Fat Diet and Causes Plaque Stabilization by Inhibiting Inflammation and Several Pro‐atherogenic Processes

2021 ◽  
pp. 2100214
Author(s):  
Victoria L. O'Morain ◽  
Yee‐Hung Chan ◽  
Jessica O. Williams ◽  
Reem Alotibi ◽  
Alaa Alahmadi ◽  
...  
2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
K Kitamura ◽  
K Isoda ◽  
K Akita ◽  
K Miyosawa ◽  
T Kadoguchi ◽  
...  

Abstract Background IκBNS is one of the nuclear IκB proteins and regulates a subset of Toll-like receptor (TLR) dependent genes. LPS acts as extremely strong stimulator of innate immunity. We tried to investigate whether stimulation of innate immunity could promote atherosclerosis in the IκBNS-deficient atherogenic mice. However all IκBNS-deficient mice died of LPS challenge at a dose of which almost all wild-type mice survived, because IκBNS-deficient mice are highly sensitive to LPS-induced endotoxin shock. Then, we decided to use a cholate-containing high fat diet (HFD(CA(+))), which has been widely used as an atherogenic diet in mice. Furthermore, HFD(CA(+)) has been shown to induce TLR4 mediated early inflammatory response. The present study aims to clarify the lack of IκBNS promotes atherogenesis in LDL receptor-deficient (LDLr−/−) mice fed HFD(CA(+)) compared with those fed a cholate-free HFD (HFD(CA(−)). Methods and results Mice that lacked IκBNS (IκBNS−/−) were crossed with LDLr−/− mice and formation of atherosclerotic lesions was analyzed after 6 weeks consumption of HFD(CA(+)) or HFD(CA(−)). The extent of atherosclerosis in the aorta (en face) was significantly increased in IκBNS−/−/LDLr−/−(CA(+)) mice compared with others after 6-week consumption of HFD (p<0.01) (Figure). Interestingly, HFD(CA(−)) did not induce significant atherosclerotic lesions in IκBNS−/−/LDLr−/− compared with LDLr−/− mice after 6-week consumption (Figure). Immunostaining of aortic root lesion revealed that HFD(CA(+)) significantly increased positive area of Mac-3 (macrophage) by 1.5-fold (p=0.01) and TLR4, interleukin-6 (IL-6) expression by 1.7-fold (P<0.05) and 1.5-fold (p<0.05) respectively in IκBNS−/−/LDLr−/− (CA(+)) compared to LDLr−/− (CA(+)) mice. Furthermore, active STAT3 (pSTAT3)-positive cells were significantly increased by 1.7-fold in the atherosclerotic lesions of IκBNS−/−/LDLr−/− (CA(+)) compared with LDLr−/− (CA(+)) mice (p<0.01). TLR4 positive areas, IL-6 positive areas, and pSTAT3 positive cells were overlapped with Mac-3, indicating that TLR4-IL-6-STAT3 axis was activated in macrophages in IκBNS−/−/LDLr−/− (CA(+)) mice. On the other hand, HFD(CA(−)) could not induce any difference in these immunoreactivities of arteriosclerotic lesions between IκBNS−/−/LDLr−/− (CA(−)) compared with LDLr−/− (CA(−)) mice. These findings suggest that IκBNS deficiency and HFD(CA(+)) promote atherogenesis in LDLr−/− mice via TLR4/IL-6/STAT3 pathway. Finally, we show the monocytes from peripheral blood of IκBNS−/−/LDLr−/− (CA(+)) mice were found to contain the most mounts of Ly6Chi among four groups, suggesting that lack of IκBNS enhances inflammation in the response HFD(CA(+)) feeding and thereby influence atherogenesis in IκBNS−/−/LDLr−/− mice. Aortic root atherosclerotic lesions Conclusions The present study is the first to demonstrate that the activation of innate immune system using HFD(CA(+)) induced significant inflammation and atherogenesis in IκBNS−/−/LDLr−/− compared with LDLr−/− mice.


2021 ◽  
Vol 10 (18) ◽  
Author(s):  
Feroz Ahmad ◽  
Robert D. Mitchell ◽  
Tom Houben ◽  
Angela Palo ◽  
Tulasi Yadati ◽  
...  

Background We have shown previously that low‐density lipoprotein (LDL) can be oxidized in the lysosomes of macrophages, that this oxidation can be inhibited by cysteamine, an antioxidant that accumulates in lysosomes, and that this drug decreases atherosclerosis in LDL receptor–deficient mice fed a high‐fat diet. We have now performed a regression study with cysteamine, which is of more relevance to the treatment of human disease. Methods and Results LDL receptor–deficient mice were fed a high‐fat diet to induce atherosclerotic lesions. They were then reared on chow diet and drinking water containing cysteamine or plain drinking water. Aortic atherosclerosis was assessed, and samples of liver and skeletal muscle were analyzed. There was no regression of atherosclerosis in the control mice, but cysteamine caused regression of between 32% and 56% compared with the control group, depending on the site of the lesions. Cysteamine substantially increased markers of lesion stability, decreased ceroid, and greatly decreased oxidized phospholipids in the lesions. The liver lipid levels and expression of cluster of differentiation 68, acetyl–coenzyme A acetyltransferase 2, cytochromes P450 (CYP)27, and proinflammatory cytokines and chemokines were decreased by cysteamine. Skeletal muscle function and oxidative fibers were increased by cysteamine. There were no changes in the plasma total cholesterol, LDL cholesterol, high‐density lipoprotein cholesterol, or triacylglycerol concentrations attributable to cysteamine. Conclusions Inhibiting the lysosomal oxidation of LDL in atherosclerotic lesions by antioxidants targeted at lysosomes causes the regression of atherosclerosis and improves liver and muscle characteristics in mice and might be a promising novel therapy for atherosclerosis in patients.


2014 ◽  
Vol 232 (1) ◽  
pp. 40-51 ◽  
Author(s):  
S.T. Hasan ◽  
J.-M. Zingg ◽  
P. Kwan ◽  
T. Noble ◽  
D. Smith ◽  
...  

2019 ◽  
Vol 23 ◽  
pp. 100344
Author(s):  
Kenichi Kitamura ◽  
Kikuo Isoda ◽  
Koji Akita ◽  
Katsutoshi Miyosawa ◽  
Tomoyasu Kadoguchi ◽  
...  

2013 ◽  
Vol 33 (suppl_1) ◽  
Author(s):  
Anna-Kaisa Ruotsalainen ◽  
Emmi Tapper ◽  
Jari Lappalainen ◽  
Seppo Ylä-Herttuala ◽  
Anna-Liisa Levonen

OBJECTIVE Transcription factor NF-E2-related factor 2 (Nrf2) regulates antioxidant and detoxifying enzymes affording cytoprotection in the cardiovascular system. We have previously reported that Nrf2 deficiency specific to bone marrow derived cells aggravates atherosclerosis in LDL receptor deficient (LDLR-/-) mice. Furthermore, Nrf2 deficiency in macrophages enhances foam cell formation and promotes the proinflammatory phenotype. In contrast, the total loss of Nrf2 has been shown to protect against atherogenesis in apoE-deficient mice. The mechanism by which Nrf2 deficiency affords atheroprotection in apoE-model is currently unknown, but combined systemic and local vascular effects have been proposed. Given these contrasting results, we aimed at assessing the effect of total loss of Nrf2 on atherogenesis in hypercholesterolemic LDLR-/- mice. METHODS AND RESULTS Nrf2-/- mice were cross-bred to LDLR-/- mice and fed a high fat diet (HFD) for 6 or 12 weeks. The degree of atherosclerosis was assessed from the cross-sections of proximal aorta. Nrf2 deficiency decreased atherosclerosis in females from 17.2±8.7 % (mean ±SD, n=11-25) to 12.3±4.6 % (p=0.1) and in males from 11.2±3.9 % to 7.6±4.6 % (p=0.025) after 6 weeks on HFD. After 12 weeks on HFD the effects were more pronounced, as Nrf2 deficiency decreased atherosclerosis from 36.5±5.5 % to 30.3±3.5 % in females (p=0.001) and from 30.6±5.7 % to 21.3±6.9 % in males (p=0.005). Nrf2 deficiency also increased the macrophage content relative to lesion area. Supporting systemic effects, Nrf2 deficiency reduced plasma total cholesterol from 24.0±8.4 mmol/l to 10.6±6,7 mmol/l (p=0.006) and triglyceride levels from 3.6±1.4 mmol/l to 1.7±1.2 mmol/l (p=0.008) in males after 6 weeks on HFD. CONCLUSIONS In contrast to bone marrow specific Nrf2 deficiency, total loss of Nrf2 aggravates atherosclerosis in LDLR-/- mice likely via systemic effects on lipid metabolism.


2012 ◽  
Vol 302 (6) ◽  
pp. E654-E665 ◽  
Author(s):  
Banumathi K. Cole ◽  
Norine S. Kuhn ◽  
Shamina M. Green-Mitchell ◽  
Kendall A. Leone ◽  
Rebekah M. Raab ◽  
...  

Central obesity is associated with chronic inflammation, insulin resistance, β-cell dysfunction, and endoplasmic reticulum (ER) stress. The 12/15-lipoxygenase enzyme (12/15-LO) promotes inflammation and insulin resistance in adipose and peripheral tissues. Given that obesity is associated with ER stress and 12/15-LO is expressed in adipose tissue, we determined whether 12/15-LO could mediate ER stress signals. Addition of 12/15-LO lipid products 12(S)-HETE and 12(S)-HPETE to differentiated 3T3-L1 adipocytes induced expression and activation of ER stress markers, including BiP, XBP-1, p-PERK, and p-IRE1α. The ER stress inducer, tunicamycin, upregulated ER stress markers in adipocytes with concomitant 12/15-LO activation. Addition of a 12/15-LO inhibitor, CDC, to tunicamycin-treated adipocytes attenuated the ER stress response. Furthermore, 12/15-LO-deficient adipocytes exhibited significantly decreased tunicamycin-induced ER stress. 12/15-LO action involves upregulation of interleukin-12 (IL-12) expression. Tunicamycin significantly upregulated IL-12p40 expression in adipocytes, and IL-12 addition increased ER stress gene expression; conversely, LSF, an IL-12 signaling inhibitor, and an IL-12p40-neutralizing antibody attenuated tunicamycin-induced ER stress. Isolated adipocytes and liver from 12/15-LO-deficient mice fed a high-fat diet revealed a decrease in spliced XBP-1 expression compared with wild-type C57BL/6 mice on a high-fat diet. Furthermore, pancreatic islets from 12/15-LO-deficient mice showed reduced high-fat diet-induced ER stress genes compared with wild-type mice. These data suggest that 12/15-LO activity participates in ER stress in adipocytes, pancreatic islets, and liver. Therefore, reduction of 12/15-LO activity or expression could provide a new therapeutic target to reduce ER stress and downstream inflammation linked to obesity.


Endocrinology ◽  
2009 ◽  
Vol 150 (5) ◽  
pp. 2109-2117 ◽  
Author(s):  
Elodie Riant ◽  
Aurélie Waget ◽  
Haude Cogo ◽  
Jean-François Arnal ◽  
Rémy Burcelin ◽  
...  

Although corroborating data indicate that estrogens influence glucose metabolism through the activation of the estrogen receptor α (ERα), it has not been established whether this pathway could represent an effective therapeutic target to fight against metabolic disturbances induced by a high-fat diet (HFD). To this end, we first evaluated the influence of chronic 17β-estradiol (E2) administration in wild-type ovariectomized mice submitted to either a normal chow diet or a HFD. Whereas only a modest effect was observed in normal chow diet-fed mice, E2 administration exerted a protective effect against HFD-induced glucose intolerance, and this beneficial action was abolished in ERα-deficient mice. Furthermore, E2 treatment reduced HFD-induced insulin resistance by 50% during hyperinsulinemic euglycemic clamp studies and improved insulin signaling (Akt phosphorylation) in insulin-stimulated skeletal muscles. Unexpectedly, we found that E2 treatment enhanced cytokine (IL-6, TNF-α) and plasminogen activator inhibitor-1 mRNA expression induced by HFD in the liver and visceral adipose tissue. Interestingly, although the proinflammatory effect of E2 was abolished in visceral adipose tissue from chimeric mice grafted with bone marrow cells from ERα-deficient mice, the beneficial effect of the hormone on glucose tolerance was not altered, suggesting that the metabolic and inflammatory effects of estrogens can be dissociated. Eventually comparison of sham-operated with ovariectomized HFD-fed mice demonstrated that endogenous estrogens levels are sufficient to exert a full protective effect against insulin resistance and glucose intolerance. In conclusion, the regulation of the ERα pathway could represent an effective strategy to reduce the impact of high-fat diet-induced type 2 diabetes.


Sign in / Sign up

Export Citation Format

Share Document