Wideband and low RCS circularly polarized slot antenna based on polarization conversion of metasurface for satellite communication application

2018 ◽  
Vol 60 (3) ◽  
pp. 679-685 ◽  
Author(s):  
Qi Zheng ◽  
Chenjiang Guo ◽  
Jun Ding
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Chun-Hong Chen ◽  
Pei-Yang Wang ◽  
Jun Chen ◽  
Ting Xu

A single-layer capsule-shaped polarization conversion metasurface (PCM) is proposed in this paper. In the W-band, its polarization conversion rate (PCR) exceeds 97%, effectively changing the polarization direction of the incident wave. PCM is arranged in a chessboard array to achieve broadband RCS reduction. Placing the PCM array on a circularly polarized sequentially rotated slot antenna array, simulated results show that the radiation characteristics of the antenna array are hardly affected by the PCM array. The results of measurement demonstrate that the RCS of the antenna array with PCM array proposed is reduced by more than 10 dB from 40 to 119 GHz; the relative bandwidth (−10 dB) reaches 96.3%.


2019 ◽  
Vol 12 (2) ◽  
pp. 131-137
Author(s):  
Puneeth Kumar Rajanna ◽  
Karthik Rudramuni ◽  
Krishnamoorthy Kandasamy

AbstractThis paper presents a novel design of a low profile circularly polarized (CP) metasurface (MTS) antenna with in-band radar cross-section (RCS) reduction property. The MTS is loaded as a superstrate on slot antenna and it can be viewed as a polarization-dependent MTS (PDMTS). The rectangular patch-based PDMTS is analyzed using characteristic mode analysis to find two orthogonal degenerate modes, which produces CP waves. Linearly polarized slot antenna is used to excite the PDMTS. The performance of PDMTS loaded slot antenna is analyzed numerically using full-wave analysis method. The PDMTS CP antenna is fabricated and its performance is tested experimentally. The proposed antenna has a compact structure and it has an overall size of $0.52{\lambda _0}\times 0.52{\lambda _0} \times 0.078{\lambda _0}$ (where ${\lambda _0}$ is the free space wavelength). The measured results show that the PDMTS antenna achieves $-10\,{\rm dB}$ impedance bandwidth of 29.41$\%$, 3-dB axial ratio bandwidth of 9.05$\%$, broadside gain of 6.34 dB, and monostatic RCS reduction of $-30.2\,{\rm dBsm}$ at the resonant frequency of 5.86 GHz. The simulated results are in well agreement with the measured results and it is well suited for C-band Radar and Satellite communication.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1164 ◽  
Author(s):  
Jian Dong ◽  
Chang Ding ◽  
Jinjun Mo

A new low-profile wideband linear-to-circular polarization conversion microstrip slot antenna based on a metasurface for C-band satellite communication applications is proposed in this paper. The metasurface basically consists of four unit cells with parasitic square cross gaps arranged in a 2 × 2 layout. By loading the metasurface on the microstrip slot antenna, linearly polarized (LP) waves from the source antenna are converted into circularly polarized (CP) waves. Then, by etching three more parasitic square cross gaps in the middle of the metasurface, enhanced impedance bandwidth and axial ratio bandwidth (ARBW) are achieved. Furthermore, an equivalent circuit and a phase analysis are presented to explain how a wide ARBW is realized by the metasurface. A final model with an overall size of 36 × 36 × 3.5 mm3 (approximately 0.65λ0 × 0.65λ0 × 0.06λ0 at 5.5 GHz) was designed and fabricated. The measured S11 bandwidth and 3 dB ARBW were 39.25% from 4.28 GHz to 6.37 GHz and 17.77% from 5.18 GHz to 6.19 GHz, respectively. As a result, the proposed antenna shows great potential for satellite communication applications due to its low profile and compact structure, wide impedance bandwidth, and wide axial ratio bandwidth.


Author(s):  
Wei He ◽  
Yejun He ◽  
Sai‐Wai Wong ◽  
Chao‐Hsiang Liao

Author(s):  
Rui-Sen Chen ◽  
Lei Zhu ◽  
Sai-Wai Wong ◽  
Jing-Yu Lin ◽  
Yin Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document