An array antenna based on coplanar parasitic patch structure

2018 ◽  
Vol 60 (4) ◽  
pp. 1016-1023 ◽  
Author(s):  
Guojin Kan ◽  
Wenbin Lin ◽  
Chang Liu ◽  
Deyou Zou
Author(s):  
Ronak Vashi ◽  
Trushit Upadhyaya ◽  
Arpan Desai

Abstract In this paper, a semi-flexible 2 × 1 array antenna is proposed with epoxy glass fiber and graphene as patch and ground, respectively. Microstrip patch antenna with a center parasitic patch of half-wavelength and slot in the radiating patch have been incorporated for the bandwidth enhancement in order of 79.56% (2.21–5.13 GHz). The antenna has an overall size of 0.30λ × 0.24λ at a lower frequency of operation (2.45 GHz). The incorporation of slotted Graphene in radiating element leads to a wideband regime with satisfactory gain values of 2.73 and 3.744 dBi at 2.40 and 4.0 GHz, respectively. Antenna radiation efficiency in the range of 78% with linear polarization makes the antenna appropriate for WLAN band and smart wireless devices application.


2013 ◽  
Vol 33 (6) ◽  
pp. 474-483
Author(s):  
Jinhong Wang ◽  
Lei Sang ◽  
Zhigang Wang ◽  
Ruimin Xu ◽  
Bo Yan

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 252
Author(s):  
Kyei Anim ◽  
Patrick Danuor ◽  
Seong-Ook Park ◽  
Young-Bae Jung

In this paper, a high efficiency broadband planar array antenna is developed at X-band for synthetic aperture radar (SAR) on small satellites. The antenna is based on a multi-layer element structure consisting of two dielectric substrates made of Taconic TLY-5 and three copper layers (i.e., the parasitic patch (top layer), the active patch (middle layer), and the ground plane (bottom layer)). The parasitic patch resides on the bottom surface of the upper TLY-5 substrate while the active patch is printed on the top surface of the lower substrate. A Rohacell foam material is sandwiched between the top layer and the middle layer to separate the two dielectric substrates in order to achieve high directivity, wideband, and to keep the antenna weight to a minimum as required by the SAR satellite application. To satisfy the required size of the antenna panel for the small SAR satellite, an asymmetric corporate feeding network (CFN) is designed to feed a 12 × 16 planar array antenna. However, it was determined that the first corporate feed junction at the center of the CFN, where higher amplitudes of the input signal are located, contributes significantly to the leaky wave emission, which degrades the radiation efficiency and increases the sidelobe level. Thus, a suspended microstrip slab, which is simply a wide and long microstrip line, is designed and positioned on the top layer directly above that feed junction to prevent the leaky waves from radiating. The experimental results of the antenna show good agreement with the simulated ones, achieving an impedance bandwidth of 12.4% from 9.01 to 10.20 GHz and a high gain above 28 dBi. The antenna efficiency estimated from the gain and directivity eclipses 51.34%.


Sign in / Sign up

Export Citation Format

Share Document