Microwave photonic filtering based on optical carrier suppression modulation

2019 ◽  
Vol 62 (1) ◽  
pp. 60-66 ◽  
Author(s):  
Faizan Umar ◽  
Jawad Mirza ◽  
Salman Ghafoor
2000 ◽  
Vol 25 (17) ◽  
pp. 1234 ◽  
Author(s):  
Alayn Loayssa ◽  
David Benito ◽  
María J. Garde

2020 ◽  
Vol 10 (11) ◽  
pp. 3813
Author(s):  
Youxue Kong ◽  
Yuan Cao ◽  
Lin Wang ◽  
Guangying Wang ◽  
Xinhuan Feng ◽  
...  

Microwave photonic frequency conversion, with flexible tunability and a simple structure based on a wavelength swept laser (WSL), is proposed and experimentally demonstrated. In the proposed frequency conversion system, a broadband WSL was used to generate a frequency-chirped optical carrier, which was sent to a Mach Zehnder modulator (MZM). A microwave signal, with its frequency to be converted, was applied to the MZM. The modulated signal was then sent to a dispersive device, where the waveform was compressed or expanded depending on the dispersion of the dispersive device. After photodetection, a frequency up-converted or down-converted microwave signal was generated. The tuning of the conversion frequency was achieved by adjusting the chirp rate of the optical carrier from the WSL or the dispersion of the dispersive device. The proposed approach was experimentally demonstrated. A microwave signal, with its frequency at 5 GHz, was up-converted to 5.577 GHz and down-converted to 4.936 GHz. The quality of the frequency converted microwave signal was also evaluated. The conversion performance could be further improved by introducing a WSL with a high duty cycle.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Jiangnan Xiao ◽  
Xu Dong ◽  
Bo Liu ◽  
Xingxing Feng ◽  
Chuang Zhao ◽  
...  

In this paper, we introduce the probabilistic shaping (PS) technique to the normal (3, 1) vector signal and simulate the generated PS (3, 1) photonic vector signal on an optical transmission system. The PS (3, 1) photonic vector signal is generated by a radio frequency (RF) signal at 12 GHz driving a Mach–Zehnder modulator- (MZM-) based optical carrier suppression (OCS) doubling, and the PS (3, 1) photonic vector signal is not precoding. The PS (3, 1) photonic vector signal and the normal (3, 1) photonic vector signal are used to transmit in 5 km, 10 km, and 20 km single-mode fibers (SMF), respectively. The simulation results demonstrate that the bit error ratio (BER) of the PS (3, 1) vector signal is less than the forward error correction (FEC) threshold of 3.8  ×  10−3, and the BER performance is better than that of the normal (3, 1) vector signal at 4 Gbit/s and 8 Gbit/s transmission rates.


2020 ◽  
Vol 38 (19) ◽  
pp. 5262-5269 ◽  
Author(s):  
Yunping Bai ◽  
Mingzheng Lei ◽  
Zhennan Zheng ◽  
Jinwang Qian ◽  
Xiyao Song ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document