Non-targeted analyses of organic compounds in urban wastewater

2014 ◽  
Vol 53 (9) ◽  
pp. 704-710 ◽  
Author(s):  
Elenilson G. Alves Filho ◽  
Luci Sartori ◽  
Lorena M. A. Silva ◽  
Bianca F. Silva ◽  
Pedro S. Fadini ◽  
...  
2006 ◽  
Vol 54 (6-7) ◽  
pp. 213-221 ◽  
Author(s):  
E. Lindblom ◽  
K.V. Gernaey ◽  
M. Henze ◽  
P.S. Mikkelsen

This paper presents a dynamic mathematical model that describes the fate and transport of two selected xenobiotic organic compounds (XOCs) in a simplified representation of an integrated urban wastewater system. A simulation study, where the xenobiotics bisphenol A and pyrene are used as reference compounds, is carried out. Sorption and specific biological degradation processes are integrated with standardised water process models to model the fate of both compounds. Simulated mass flows of the two compounds during one dry weather day and one wet weather day are compared for realistic influent flow rate and concentration profiles. The wet weather day induces resuspension of stored sediments, which increases the pollutant load on the downstream system. The potential of the model to elucidate important phenomena related to origin and fate of the model compounds is demonstrated.


2018 ◽  
Vol 10 (9) ◽  
pp. 3055 ◽  
Author(s):  
Mohammad Alsheyab ◽  
Sigrid Kusch-Brandt

Due to the ever-growing demand for natural resources, wastewater is being considered an alternative source of water and potentially other resources. Using Qatar as an example, this study assesses the resources embodied in wastewater and paves the way to combine wastewater treatment with advanced resource recovery (water, energy, nitrogen, phosphorous, added value products) which can turn wastewater management from a major cost into a source of profit. In this sense, wastewater is no longer seen as a problem in need of a solution, rather it is part of the solution to challenges that societies are facing today. Based on estimated quantities of generated urban wastewater and its average composition, mass flow analysis is implemented to explore the maximum availability of major wastewater constituents (solids, organic compounds, nutrients, chloride, alkalinity, sulfide). An assessment analysis reveals that, in Qatar, more than 290,000 metric tons total solids, 77,000 metric tons organic compounds, 6000 metric tons nitrogen, 81,000 metric tons chloride, 2800 metric tons sulfide, and 880 metric tons of phosphorus are embedded in about 176 million m3 of urban wastewater annually. One promising valorization strategy is the implementation of anaerobic digestion with biogas production, and the organic materials contained in Qatar’s wastewater corresponds to more than 27 million m3 of methane (equivalent to an energy content of more than 270 GWh) per year. The results further suggest that the recovery of nitrogen, phosphorus, and sulfide should be given priority.


2021 ◽  
Author(s):  
Luisa Helm ◽  
Fabienne Uphoff ◽  
Piero Bellanova ◽  
Nina Engels ◽  
Jan Schwarzbauer ◽  
...  

<p>An alarming rise of sea level is the most prominent but by far not the only hazardous phenomenon caused by climatic change. Extreme weather events with increasing frequency, such as droughts or contrasting heavy rainfalls, cause severe harm to local populations. This holds true especially for fast-growing urban centers, such as Chennai (India) with a missing or unmaintained waste and drainage management. These large coastal population centers face an increasing vulnerability to frequently reoccurring monsoon-induced floods (e.g., Chennai flood 2015; Kochi flood 2018, 2019), intensified by the advancing urbanization along the urban landscape crossing river systems and adjacent floodplains. Accompanied with these extreme floods are the increased release, re-localization and distribution of toxic xenobiotics and other pollutants (e.g., PAHs, LABs, DEHA, Mesamoll<sup>®</sup>, NBFA, and pesticides) causing harm to adjacent communities and the environment along the river’s pathway. In order to endeavor the unknown risk posed by toxic river floods, to assess the flood and associated pollution history the preserved pollution signature from sedimentary records needs to be considered.</p><p>This investigation evaluates the inorganic and organic pollutant assemblage in nine sediment profiles along the Adyar and Cooum rivers (Chennai, India). Thereby heavy metals (Cr, Ni, Cu, Zn, Pb) show a continuous concentration decrease downstream towards the coast with their specific sources remaining unsolved. Based on GC-MS analysis, four main groups of organic pollutants have been detected: petrogenic pollutants (hopanes, PAHs), urban wastewater compounds (LABs, DEHA, methyl-triclosan, octocrylene), technical compounds (Mesamoll<sup>®</sup>, DPE, NBFA, PCBs) and pesticides (DDX). Organic compounds show a distinctly differing distribution pattern compared to the heavy metals. Some compounds (e.g., PAHs, LABs, DEHA, NBFA, Mesamoll<sup>®</sup>) were detected in high concentrations deriving from nearby point sources (e.g., tributaries, canals). While most organic compounds show high source specific properties, the definite sources for other compounds remain vague as the result of large scale and diffusiveness of anthropogenic emissions, such as air pollution or (untreated) industrial and municipal wastewaters. The chosen approaches have shown that urban wastewater pollutants and several technical compounds are suitable markers to assess the anthropogenic induced pollution and event history in sedimentary archives. However, the given sedimentary archives in these fast-growing and urbanized population centers might not always allow a full reconstruction of past events, as anthropogenic alterations on the rivers course and floodplains effect the archive’s preservation potential. For Chennai, advantages and disadvantages regarding the chemostratigraphic preservation are delicately balanced. However, increasing urbanization and anthropogenic overprinting causes the disruption of sedimentary archives and redistribution of contaminated material (e.g., through dredging), this favors remobilization and relocation of hazardous contaminants, thus endangering the local population due to the high mobility of these pollutants.</p>


1997 ◽  
Vol 161 ◽  
pp. 419-429 ◽  
Author(s):  
Antonio Lazcano

AbstractDifferent current ideas on the origin of life are critically examined. Comparison of the now fashionable FeS/H2S pyrite-based autotrophic theory of the origin of life with the heterotrophic viewpoint suggest that the later is still the most fertile explanation for the emergence of life. However, the theory of chemical evolution and heterotrophic origins of life requires major updating, which should include the abandonment of the idea that the appearance of life was a slow process involving billions of years. Stability of organic compounds and the genetics of bacteria suggest that the origin and early diversification of life took place in a time period of the order of 10 million years. Current evidence suggest that the abiotic synthesis of organic compounds may be a widespread phenomenon in the Galaxy and may have a deterministic nature. However, the history of the biosphere does not exhibits any obvious trend towards greater complexity or «higher» forms of life. Therefore, the role of contingency in biological evolution should not be understimated in the discussions of the possibilities of life in the Universe.


Sign in / Sign up

Export Citation Format

Share Document