In vitro effects of growth factors on rat germ cell RNA synthesis and their modulation by sertoli cell-secreted proteins

1989 ◽  
Vol 1 (2) ◽  
pp. 122-128 ◽  
Author(s):  
S. Fradin ◽  
P. Barbey ◽  
M. A. Drosdowsky
1999 ◽  
Vol 340 (1) ◽  
pp. 309-320 ◽  
Author(s):  
Sikha Bettina MUKHERJEE ◽  
S. ARAVINDA ◽  
B. GOPALAKRISHNAN ◽  
Sushma NAGPAL ◽  
Dinakar M. SALUNKE ◽  
...  

The seminiferous tubular fluid (STF) provides the microenvironment necessary for spermatogenesis in the adluminal compartment of the seminiferous tubule (ST), primarily through secretions of the Sertoli cell. Earlier studies from this laboratory demonstrated the presence of glutathione S-transferase (GST) in STF collected from adult rat testis and in the spent media of ST cultures. This study describes the cellular source, isoform composition and possible function of GSTs in the STF. The major GST isoforms present in STF in vivo share extensive N-terminal similarity with rat GSTM1 (rGSTM1), rGSTM2, rGSTM3 and rGST-Alpha. Molecular masses of rGSTM2, rGSTM3 and rGST-Alpha from liver and testis sources were similar, unlike STF-GSTM1, which was larger by 325 Da than its liver counterpart. Peptide digest analysis profiles on reverse-phase HPLC between liver and STF isoforms were identical, and N-terminal sequences of selected peptides obtained by digestion of the various isoforms were closely similar. The above results confirmed close structural similarity between liver and STF-GST isoforms. Active synthesis and secretion of GSTs by the STs were evident from recovery of radiolabelled GST from the spent media of ST cultures. Analysis of secreted GST isoforms showed that GST-Alpha was not secreted by the STs in vitro, whereas there was an induction of GST-Pi secretion. Detection of immunostainable GST-Mu in Sertoli cells in vitro and during different stages of the seminiferous epithelium in vivo, coupled with the recovery of radiolabelled GST from Sertoli cell-culture media, provided evidence for Sertoli cells as secretors of GST. In addition, STF of ‘Sertoli cell only’ animals showed no change in the profile of GST isoform secretion, thereby confirming Sertoli cells as prime GST secretors. Non-recovery of [35S]methionine-labelled GSTs from germ cell culture supernatants, but their presence in germ cell lysates, confirm the ability of the germ cells to synthesize, but not to release, GSTs. Functionally, STF-GSTM1 appeared to serve as a steroid-binding protein by its ability to bind to testosterone and oestradiol, two important hormones in the ST that are essential for spermatogenesis, with binding constants of < 9.8×10-7 M for testosterone and 9×10-6 M for oestradiol respectively.


2019 ◽  
Vol 130 ◽  
pp. 8-18
Author(s):  
M.N. Segunda ◽  
J. Bahamonde ◽  
I. Muñoz ◽  
S. Sepulveda ◽  
J. Cortez ◽  
...  

2003 ◽  
Vol 17 (9) ◽  
pp. 1868-1879 ◽  
Author(s):  
Wei Yan ◽  
Jun-Xing Huang ◽  
Anna-Stina Lax ◽  
Lauri Pelliniemi ◽  
Eeva Salminen ◽  
...  

Abstract To explore physiological roles of BCL-W, a prosurvival member of the BCL-2 protein family, we generated transgenic (TG) mice overexpressing Bcl-w driven by a chicken β-actin promoter. Male Bcl-w TG mice developed normally but were infertile. The adult TG testes displayed disrupted spermatogenesis with various severities ranging from thin seminiferous epithelium containing less germ cells to Sertoli cell-only appearance. No overpopulation of any type of germ cells was observed during testicular development. In contrast, the developing TG testes displayed decreased number of spermatogonia, degeneration, and detachment of spermatocytes and Sertoli cell vacuolization. The proliferative activity of germ cells was significantly reduced during testicular development and spermatogenesis, as determined by in vivo and in vitro 5′-bromo-2′deoxyuridine incorporation assays. Sertoli cells were structurally and functionally normal. The degenerating germ cells were TUNEL-negative and no typical apoptotic DNA ladder was detected. Our data suggest that regulated spatial and temporal expression of BCL-W is required for normal testicular development and spermatogenesis, and overexpression of BCL-W inhibits germ cell cycle entry and/or cell cycle progression leading to disrupted spermatogenesis.


Sign in / Sign up

Export Citation Format

Share Document