NEK5 regulates cell cycle progression during mouse oocyte maturation and preimplantation embryonic development

2019 ◽  
Vol 86 (9) ◽  
pp. 1189-1198 ◽  
Author(s):  
Yuan‐Yuan Li ◽  
Lei Guo ◽  
Hui Li ◽  
Jian Li ◽  
Feng Dong ◽  
...  
2014 ◽  
Vol 37 (2) ◽  
pp. 126-132 ◽  
Author(s):  
Xiao-Xin Dai ◽  
Xing Duan ◽  
Hong-Lin Liu ◽  
Xiang-Shun Cui ◽  
Nam-Hyung Kim ◽  
...  

2018 ◽  
Vol 37 (24) ◽  
Author(s):  
Qian‐Qian Sha ◽  
Jia‐Li Yu ◽  
Jing‐Xin Guo ◽  
Xing‐Xing Dai ◽  
Jun‐Chao Jiang ◽  
...  

2012 ◽  
Vol 287 (35) ◽  
pp. 29442-29456 ◽  
Author(s):  
Shakur Mohibi ◽  
Channabasavaiah Basavaraju Gurumurthy ◽  
Alo Nag ◽  
Jun Wang ◽  
Sameer Mirza ◽  
...  

1999 ◽  
Vol 19 (12) ◽  
pp. 8686-8693 ◽  
Author(s):  
Zhigang Shu ◽  
Sheryl Smith ◽  
Lijuan Wang ◽  
Michael C. Rice ◽  
Eric B. Kmiec

ABSTRACT muREC2/RAD51L1 is a radiation-inducible gene that regulates cell cycle progression. To elucidate the biological function of muREC2/RAD51L1, the gene was disrupted in embryonic stem cells by homologous recombination. Mice heterozygous formuREC2/RAD51L1 appear normal and fertile; however, no homozygous pups were born after interbreeding of heterozygous mice. Timed pregnancy studies showed that homozygous mutant embryos were severely retarded in growth as early as ca. 5 days gestation (E5.5) and were completely resorbed by E8.5. Mutant blastocyst outgrowth was also severely impaired in a double-knockout embryo, but embryonic development did progress further in a p53-null background. These results suggest that muREC2/RAD51L1 plays a role in cell proliferation and early embryonic development, perhaps through interaction with p53.


2020 ◽  
Vol 27 (12) ◽  
pp. 3273-3288
Author(s):  
Hye In Cho ◽  
Min Seong Kim ◽  
Jina Lee ◽  
Byong Chul Yoo ◽  
Kyung Hee Kim ◽  
...  

AbstractBrpf-histone acetyltransferase (HAT) complexes have important roles in embryonic development and regulating differentiation in ESCs. Among Brpf family, Brpf3 is a scaffold protein of Myst2 histone acetyltransferase complex that plays crucial roles in gene regulation, DNA replication, development as well as maintaining pluripotency in embryonic stem cells (ESCs). However, its biological functions in ESCs are not elucidated. In this study, we find out that Brpf3 protein level is critical for Myst2 stability and E3 ligase Huwe1 functions as a novel negative regulator of Myst2 via ubiquitin-mediated degradation. Importantly, Brpf3 plays an antagonistic role in Huwe1-mediated degradation of Myst2, suggesting that protein–protein interaction between Brpf3 and Myst2 is required for retaining Myst2 stability. Further, Brpf3 overexpression causes the aberrant upregulation of Myst2 protein levels which in turn induces the dysregulated cell-cycle progression and also delay of early embryonic development processes such as embryoid-body formation and lineage commitment of mouse ESCs. The Brpf3 overexpression-induced phenotypes can be reverted by Huwe1 overexpression. Together, these results may provide novel insights into understanding the functions of Brpf3 in proper differentiation as well as cell-cycle progression of ESCs via regulation of Myst2 stability by obstructing Huwe1-mediated ubiquitination. In addition, we suggest that this is a useful report which sheds light on the function of an unknown gene in ESC field.


2004 ◽  
Vol 165 (1) ◽  
pp. 63-75 ◽  
Author(s):  
Lu Sun ◽  
Khaled Machaca

Ca2+ is a ubiquitous intracellular messenger that is important for cell cycle progression. Genetic and biochemical evidence support a role for Ca2+ in mitosis. In contrast, there has been a long-standing debate as to whether Ca2+ signals are required for oocyte meiosis. Here, we show that cytoplasmic Ca2+ (Ca2+cyt) plays a dual role during Xenopus oocyte maturation. Ca2+ signals are dispensable for meiosis entry (germinal vesicle breakdown and chromosome condensation), but are required for the completion of meiosis I. Interestingly, in the absence of Ca2+cyt signals oocytes enter meiosis more rapidly due to faster activation of the MAPK-maturation promoting factor (MPF) kinase cascade. This Ca2+-dependent negative regulation of the cell cycle machinery (MAPK-MPF cascade) is due to Ca2+cyt acting downstream of protein kinase A but upstream of Mos (a MAPK kinase kinase). Therefore, high Ca2+cyt delays meiosis entry by negatively regulating the initiation of the MAPK-MPF cascade. These results show that Ca2+ modulates both the cell cycle machinery and nuclear maturation during meiosis.


Cell Cycle ◽  
2012 ◽  
Vol 11 (23) ◽  
pp. 4366-4377 ◽  
Author(s):  
Shang-Wu Yang ◽  
Chen Gao ◽  
Lei Chen ◽  
Ya-Li Song ◽  
Jin-Liang Zhu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document