scholarly journals Disruption of muREC2/RAD51L1 in Mice Results in Early Embryonic Lethality Which Can Be Partially Rescued in a p53−/− Background

1999 ◽  
Vol 19 (12) ◽  
pp. 8686-8693 ◽  
Author(s):  
Zhigang Shu ◽  
Sheryl Smith ◽  
Lijuan Wang ◽  
Michael C. Rice ◽  
Eric B. Kmiec

ABSTRACT muREC2/RAD51L1 is a radiation-inducible gene that regulates cell cycle progression. To elucidate the biological function of muREC2/RAD51L1, the gene was disrupted in embryonic stem cells by homologous recombination. Mice heterozygous formuREC2/RAD51L1 appear normal and fertile; however, no homozygous pups were born after interbreeding of heterozygous mice. Timed pregnancy studies showed that homozygous mutant embryos were severely retarded in growth as early as ca. 5 days gestation (E5.5) and were completely resorbed by E8.5. Mutant blastocyst outgrowth was also severely impaired in a double-knockout embryo, but embryonic development did progress further in a p53-null background. These results suggest that muREC2/RAD51L1 plays a role in cell proliferation and early embryonic development, perhaps through interaction with p53.

2020 ◽  
Vol 27 (12) ◽  
pp. 3273-3288
Author(s):  
Hye In Cho ◽  
Min Seong Kim ◽  
Jina Lee ◽  
Byong Chul Yoo ◽  
Kyung Hee Kim ◽  
...  

AbstractBrpf-histone acetyltransferase (HAT) complexes have important roles in embryonic development and regulating differentiation in ESCs. Among Brpf family, Brpf3 is a scaffold protein of Myst2 histone acetyltransferase complex that plays crucial roles in gene regulation, DNA replication, development as well as maintaining pluripotency in embryonic stem cells (ESCs). However, its biological functions in ESCs are not elucidated. In this study, we find out that Brpf3 protein level is critical for Myst2 stability and E3 ligase Huwe1 functions as a novel negative regulator of Myst2 via ubiquitin-mediated degradation. Importantly, Brpf3 plays an antagonistic role in Huwe1-mediated degradation of Myst2, suggesting that protein–protein interaction between Brpf3 and Myst2 is required for retaining Myst2 stability. Further, Brpf3 overexpression causes the aberrant upregulation of Myst2 protein levels which in turn induces the dysregulated cell-cycle progression and also delay of early embryonic development processes such as embryoid-body formation and lineage commitment of mouse ESCs. The Brpf3 overexpression-induced phenotypes can be reverted by Huwe1 overexpression. Together, these results may provide novel insights into understanding the functions of Brpf3 in proper differentiation as well as cell-cycle progression of ESCs via regulation of Myst2 stability by obstructing Huwe1-mediated ubiquitination. In addition, we suggest that this is a useful report which sheds light on the function of an unknown gene in ESC field.


2004 ◽  
Vol 24 (16) ◽  
pp. 7197-7205 ◽  
Author(s):  
Matthew J. Kohn ◽  
Sandra W. Leung ◽  
Vittoria Criniti ◽  
Monica Agromayor ◽  
Lili Yamasaki

ABSTRACT E2F/DP complexes activate or repress the transcription of E2F target genes, depending on the association of a pRB family member, thereby regulating cell cycle progression. Whereas the E2F family consists of seven members, the DP family contains only two (Dp1 and Dp2), Dp1 being the more highly expressed member. In contrast to the inactivation of individual E2F family members, we have recently demonstrated that loss of Dp1 results in embryonic lethality by embryonic day 12.5 (E12.5) due to the failure of extraembryonic lineages to develop and replicate DNA properly. To bypass this placental requirement and search for roles of Dp1 in the embryo proper, we generated Dp1-deficient embryonic stem (ES) cells that carry the ROSA26-LacZ marker and injected them into wild-type blastocysts to construct Dp1-deficient chimeras. Surprisingly, we recovered mid- to late gestational embryos (E12.5 to E17.5), in which the Dp1-deficient ES cells contributed strongly to most chimeric tissues as judged by X-Gal (5-bromo-4-chloro-3-indolyl-β-d-galactopyranoside) staining and Western blotting. Importantly, the abundance of DP2 protein does not increase and the expression of an array of cell cycle genes is virtually unchanged in Dp1-deficient ES cells or chimeric E15.5 tissues with the absence of Dp1. Thus, Dp1 is largely dispensable for embryonic development, despite the absolute extraembryonic requirement for Dp1, which is highly reminiscent of the restricted roles for Rb and cyclins E1/E2 in vivo.


Biomedicines ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 397
Author(s):  
Cheuk Yiu Tenny Chung ◽  
Paulisally Hau Yi Lo ◽  
Kenneth Ka Ho Lee

BRISC and BRCA1-A complex member 2 (Babam2) plays an essential role in promoting cell cycle progression and preventing cellular senescence. Babam2-deficient fibroblasts show proliferation defect and premature senescence compared with their wild-type (WT) counterpart. Pluripotent mouse embryonic stem cells (mESCs) are known to have unlimited cell proliferation and self-renewal capability without entering cellular senescence. Therefore, studying the role of Babam2 in ESCs would enable us to understand the mechanism of Babam2 in cellular aging, cell cycle regulation, and pluripotency in ESCs. For this study, we generated Babam2 knockout (Babam2−/−) mESCs to investigate the function of Babam2 in mESCs. We demonstrated that the loss of Babam2 in mESCs leads to abnormal G1 phase retention in response to DNA damage induced by gamma irradiation or doxorubicin treatments. Key cell cycle regulators, CDC25A and CDK2, were found to be degraded in Babam2−/− mESCs following gamma irradiation. In addition, Babam2−/− mESCs expressed p53 strongly and significantly longer than in control mESCs, where p53 inhibited Nanog expression and G1/S cell cycle progression. The combined effects significantly reduced developmental pluripotency in Babam2−/− mESCs. In summary, Babam2 maintains cell cycle regulation and pluripotency in mESCs in response to induced DNA damage.


2005 ◽  
Vol 25 (9) ◽  
pp. 3535-3542 ◽  
Author(s):  
Phang-Lang Chen ◽  
Feng Liu ◽  
Suna Cai ◽  
Xiaoqin Lin ◽  
Aihua Li ◽  
...  

ABSTRACT CtIP interacts with a group of tumor suppressor proteins including RB (retinoblastoma protein), BRCA1, Ikaros, and CtBP, which regulate cell cycle progression through transcriptional repression as well as chromatin remodeling. However, how CtIP exerts its biological function in cell cycle progression remains elusive. To address this issue, we generated an inactivated Ctip allele in mice by inserting a neo gene into exon 5. The corresponding Ctip − / − embryos died at embryonic day 4.0 (E4.0), and the blastocysts failed to enter S phase but accumulated in G1, leading to a slightly elevated cell death. Mouse NIH 3T3 cells depleted of Ctip were arrested at G1 with the concomitant increase in hypophosphorylated Rb and Cdk inhibitors, p21. However, depletion of Ctip failed to arrest Rb − / − mouse embryonic fibroblasts (MEF) or human osteosarcoma Saos-2 cells at G1, suggesting that this arrest is RB dependent. Importantly, the life span of Ctip +/ − heterozygotes was shortened by the development of multiple types of tumors, predominantly, large lymphomas. The wild-type Ctip allele and protein remained detectable in these tumors, suggesting that haploid insufficiency of Ctip leads to tumorigenesis. Taken together, this finding uncovers a novel G1/S regulation in that CtIP counteracts Rb-mediated G1 restraint. Deregulation of this function leads to a defect in early embryogenesis and contributes, in part, to tumor formation.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1371-1371
Author(s):  
Andrew Schuldenfrei ◽  
Amy Belton ◽  
Jeanne Kowalski ◽  
C. Conover Talbot ◽  
Francescopaolo Di Cello ◽  
...  

Abstract Abstract 1371 Although the high mobility group AT-hook 1 (HMGA1) gene functions as a potent oncogene in experimental models and high expression of HMGA1 portends a poor prognosis in diverse tumors, its role in leukemogenesis has remained elusive. We showed previously that HMGA1 induces leukemic transformation in cultured cells and causes aggressive lymphoid leukemia in transgenic mice. Inhibiting HMGA1 expression blocks colony formation in human lymphoid leukemia cells in vitro. Moreover, high levels correlate with relapse in childhood acute lymphoblastic leukemia (ALL), suggesting that it plays an important role in ALL. Because HMGA1 functions as a chromatin remodeling protein that modulates gene expression, we hypothesized that it drives leukemogenesis by dysregulating specific genes and pathways. To identify genes and cellular pathways induced by HMGA1 that could be targeted in therapy, we performed global gene expression profile analysis from lymphoid cells from the HMGA1 transgenic mice at different stages in tumorigenesis. All HMGA1 transgenics succumb to lymphoid malignancy with complete penetrance by 8–12 months. Pooled RNA samples at 2 months (before tumors develop) and 12 months (after tumors are well-established) were analyzed for differential expression of >20,000 unique genes by microarray analysis (Affymetrix) using both a parametric and nonparametric approach. A subset of differentially expressed genes was confirmed using quantitative, RT-PCR. Differentially expressed genes were analyzed for cellular pathways and functions using Ingenuity Pathway Analysis (IPA; www.ingenuity.com) and Gene Set Enrichment Analysis. To determine if these genes and pathways were relevant in human ALL, we knocked down HMGA1 expression in human ALL cells and assessed expression of a subset of the differentially expressed genes. Early in leukemogenesis (at 2 months), 113 genes were differentially expressed in the HMGA1 transgenics compared to controls. In established leukemia (12 months), 715 genes were differentially expressed. In established tumors, the dysregulated genes are involved in cancer, cell cycle regulation, and cell-mediated immune response by Ingenuity Pathway Analysis. Geneset enrichment showed that embryonic stem cell genes are enriched in the established leukemic cells. At both early and late stages in leukemogenesis, differentially regulated genes are involved in cellular development, hematopoiesis, and hematologic development. Early in leukemogenesis, most of the significantly dysregulated genes are involved in the inflammatory response and included NF-kappaB as a major node. In human ALL cells, knock-down of HMGA1 also resulted in knock-down of genes identified in our transgenic model, suggesting that these HMGA1 regulated genes are also relevant to human ALL. In summary, we found that HMGA1 induces inflammatory pathways early in leukemogenesis and pathways involved in embryonic stem cells, cell cycle progression, and cancer in established tumors. HMGA1 also dysregulates genes involved in cellular development and hematopoiesis at both early and late stages of tumorigenesis. Some of these HMGA1 pathways were also present in human ALL cells. Moreover, these results provide mechanistic insight into HMGA1 function at different stages in leukemogenesis and point to cellular pathways that could serve as therapeutic targets in ALL. Disclosures: No relevant conflicts of interest to declare.


2012 ◽  
Vol 287 (35) ◽  
pp. 29442-29456 ◽  
Author(s):  
Shakur Mohibi ◽  
Channabasavaiah Basavaraju Gurumurthy ◽  
Alo Nag ◽  
Jun Wang ◽  
Sameer Mirza ◽  
...  

PLoS ONE ◽  
2008 ◽  
Vol 3 (6) ◽  
pp. e2478 ◽  
Author(s):  
Kirill V. Tarasov ◽  
Yelena S. Tarasova ◽  
Wai Leong Tam ◽  
Daniel R. Riordon ◽  
Steven T. Elliott ◽  
...  

Silence ◽  
2011 ◽  
Vol 2 (1) ◽  
pp. 7 ◽  
Author(s):  
Cédric Belair ◽  
Jessica Baud ◽  
Sandrine Chabas ◽  
Cynthia M Sharma ◽  
Jörg Vogel ◽  
...  

2015 ◽  
Vol 231 (2) ◽  
pp. 403-413 ◽  
Author(s):  
Iek Chi Lo ◽  
Hing Chung Chan ◽  
Zenghua Qi ◽  
Kwun Lam Ng ◽  
Chun So ◽  
...  

2019 ◽  
Author(s):  
Zhiyuan Li ◽  
Xiaofei Tian ◽  
Xinmiao Ji ◽  
Dongmei Wang ◽  
Xin Zhang

AbstractULK1-ATG13 is the most upstream autophagy initiation complex that is phosphorylated by mTORC1 and AMPK to induce autophagy in asynchronous conditions. However, the phospho-regulation and function of ULK1-ATG13 in mitosis and cell cycle remains unknown. Here we show that ULK1-ATG13 complex is differentially regulated throughout the cell cycle. Notably, in mitosis, both ULK1 and ATG13 are highly phosphorylated by CDK1/cyclin B, the key cell cycle machinery. Combining mass spectrometry and site-directed mutagenesis, we found that CDK1-induced ULK1-ATG13 phosphorylation positively regulates mitotic autophagy and Taxol chemosensitivity, and some phosphorylation sites occur in cancer patients. Moreover, double knockout of ULK1 and ATG13 could block cell cycle progression and significantly decrease cancer cell proliferation in cell line and mouse models. Our results not only bridge the mutual regulation between the core machineries of autophagy and mitosis, illustrate the mitotic autophagy regulation mechanism, but also provide ULK1-ATG13 as potential targets for cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document