Oviduct epithelial cells‐derived extracellular vesicles improve preimplantation developmental competence of in vitro produced porcine parthenogenetic and cloned embryos

Author(s):  
Xun Fang ◽  
Bereket Molla Tanga ◽  
Seonggyu Bang ◽  
Gyeonghwan Seong ◽  
Islam M. Saadeldin ◽  
...  
2012 ◽  
Vol 77 (9) ◽  
pp. 1834-1845 ◽  
Author(s):  
K. Kasperczyk ◽  
A. Bajek ◽  
R. Joachimiak ◽  
K. Walasik ◽  
A. Marszalek ◽  
...  

1995 ◽  
Vol 12 (1) ◽  
pp. 9-13 ◽  
Author(s):  
C. Larocca ◽  
S. Kmaid ◽  
J. Calvo ◽  
J.E. Romano ◽  
M. Viqueira ◽  
...  

2020 ◽  
Vol 21 (23) ◽  
pp. 8888
Author(s):  
Bárbara Melo-Baez ◽  
Yat S. Wong ◽  
Constanza J. Aguilera ◽  
Joel Cabezas ◽  
Ana C. F. Mançanares ◽  
...  

During early development, embryos secrete extracellular vesicles (EVs) that participate in embryo–maternal communication. Among other molecules, EVs carry microRNAs (miRNAs) that interfere with gene expression in target cells; miRNAs participate in embryo–maternal communication. Embryo selection based on secreted miRNAs may have an impact on bovine breeding programs. This research aimed to evaluate the size, concentration, and miRNA content of EVs secreted by bovine embryos with different developmental potential, during the compaction period (days 3.5–5). Individual culture media from in vitro–produced embryos were collected at day 5, while embryos were further cultured and classified at day 7, as G1 (conditioned-culture media by embryos arrested in the 8–16-cells stage) and G2 (conditioned-culture media by embryos that reached blastocyst stages at day 7). Collected nanoparticles from embryo conditioned culture media were cataloged as EVs by their morphology and the presence of classical molecular markers. Size and concentration of EVs from G1 were higher than EVs secreted by G2. We identified 95 miRNAs; bta-miR-103, bta-miR-502a, bta-miR-100, and bta-miR-1 were upregulated in G1, whereas bta-miR-92a, bta-miR-140, bta-miR-2285a, and bta-miR-222 were downregulated. The most significant upregulated pathways were fatty acid biosynthesis and metabolism, lysine degradation, gap junction, and signaling pathways regulating pluripotency of stem cells. The characteristics of EVs secreted by bovine embryos during the compaction period vary according to embryo competence. Embryos that reach the blastocyst stage secrete fewer and smaller vesicles. Furthermore, the loading of specific miRNAs into the EVs depends on embryo developmental competence.


Zygote ◽  
2020 ◽  
pp. 1-6
Author(s):  
Shayan Nejat-Dehkordi ◽  
Ebrahim Ahmadi ◽  
Abolfazl Shirazi ◽  
Hassan Nazari ◽  
Naser Shams-Esfandabadi

Summary Culture conditions have a profound effect on the quality of in vitro-produced embryos. Co-culturing embryos with somatic cells has some beneficial effects on embryonic development. Considering the ability of stem cells to secrete a broad range of growth factors with different biological activities, we hypothesized that bovine amniotic membrane stem cells (bAMSCs) might be superior to bovine oviduct epithelial cells (BOECs) in supporting embryonic development and enhancing their cryo-survival. Bovine abattoir-derived oocytes were matured and fertilized in vitro. The resultant presumptive zygotes were then cultured up to the blastocyst stage in the following groups: (i) co-culture with bAMSCs, (ii) co-culture with BOECs, and (iii) cell-free culture (Con). Embryos that reached the blastocyst stage were vitrified and warmed, and their post-warming re-expansion, survival and hatching rates were evaluated after 72 h culture. Results showed that the cleavage, blastocyst, and 2 h post-warming re-expansion rates of embryos did not differ between groups. However, their survival rates in BOEC and bAMSC groups were significantly higher compared with the control (72.7, 75.6 and 37.5%, respectively, P < 0.05). In conclusion, our results showed that the cryo-survivability of IVF-derived bovine embryos could be improved through co-culturing with bAMSCs. Moreover, considering the possibility to provide multiple passages from bAMSCs compared with BOECs, due to their stemness properties and their ability to produce growth factors, the use of bAMSCs is a good alternative to BOECs in embryo co-culture systems.


Reproduction ◽  
2001 ◽  
pp. 925-932 ◽  
Author(s):  
X Li ◽  
LH Morris ◽  
WR Allen

The influence of co-culture with either oviduct epithelial cells or fetal fibroblast cells on in vitro maturation of equine oocytes and their potential for development to blastocysts and fetuses after intracytoplasmic sperm injection (ICSI) was investigated. The oocytes were obtained from ovaries from abattoirs and were matured in vitro for 28-30 h in TCM-199 only, or in TCM-199 co-culture with oviduct epithelial cells or fetal fibroblast cells. Metaphase II oocytes were subjected to ICSI with an ionomycin-treated spermatozoon. The injected oocytes were cultured for 7-9 days in Dulbecco's modified Eagle's medium. Morphologically normal early blastocysts were transferred to the uteri of recipient mares. Nuclear maturation rates and the rates of cleavage to the two-cell stage for injected oocytes were similar in the groups of oocytes that were matured in TCM-199 (49 and 63%), in co-culture with oviduct epithelial cells (53 and 65%) or in co-culture with fetal fibroblasts (51 and 57%). There were no significant differences in the proportions of blastocysts that developed from the two-cell embryos derived from oocytes matured by co-culture with either oviduct epithelial cells (30%) or fetal fibroblasts (17%). However, significantly higher proportions of blastocysts were produced from both these co-culture groups than from the groups of oocytes matured in TCM-199 only (P < 0.05). Six of the blastocysts that had developed from oocytes co-cultured with oviduct epithelial cells were transferred into recipient mares and four pregnancies resulted. These results demonstrate a beneficial influence of co-culture with either oviduct epithelial cells or fetal fibroblasts for maturation of oocytes in vitro.


2001 ◽  
Vol 68 (1-2) ◽  
pp. 121-131 ◽  
Author(s):  
Eiichi Kawakami ◽  
Chikako Kashiwagi ◽  
Tatsuya Hori ◽  
Toshihiko Tsutsui

Sign in / Sign up

Export Citation Format

Share Document