Quantitative MRI studies for assessment of multiple sclerosis

1992 ◽  
Vol 24 (1) ◽  
pp. 90-99 ◽  
Author(s):  
F. Pannizzo ◽  
M. J. B. Stallmeyer ◽  
J. Friedman ◽  
R. J. Jennis ◽  
J. Zabriskie ◽  
...  
2017 ◽  
Vol 01 (04) ◽  
pp. E294-E306 ◽  
Author(s):  
Mike Wattjes ◽  
Peter Raab

AbstractMagnetic resonance imaging (MRI) plays an important role in the diagnosis of multiple sclerosis and has been incorporated into the McDonald diagnostic criteria for MS. In particular, for the exclusion of important differential diagnosis and comorbidities, new MRI markers have been established such as the “central vein sign”. In addition to diagnostic purposes, the role of MRI in MS monitoring is becoming increasingly important, particularly for pharmacovigilance. This includes treatment efficacy monitoring, prediction of treatment response and safety monitoring. Quantitative MRI methods and ultra-high-field MRI offer the opportunity for the quantitative assessment of damage in normal-appearing brain tissue. However, the standardization of these techniques with the goal of implementation in clinical routine will be one of the major challenges in the near future.


2017 ◽  
Vol 46 (5) ◽  
pp. 1485-1490 ◽  
Author(s):  
René-Maxime Gracien ◽  
Sarah C. Reitz ◽  
Stephanie-Michelle Hof ◽  
Vinzenz Fleischer ◽  
Amgad Droby ◽  
...  

BMC Neurology ◽  
2013 ◽  
Vol 13 (1) ◽  
Author(s):  
Tanuja Chitnis ◽  
◽  
Charles R Guttmann ◽  
Alexander Zaitsev ◽  
Alexander Musallam ◽  
...  

2012 ◽  
Vol 19 (6) ◽  
pp. 732-741 ◽  
Author(s):  
Marios C Yiannakas ◽  
Daniel J Tozer ◽  
Klaus Schmierer ◽  
Declan T Chard ◽  
Valerie M Anderson ◽  
...  

Background: There are modest correlations between multiple sclerosis (MS) disability and white matter lesion (WML) volumes, as measured by T2-weighted (T2w) magnetic resonance imaging (MRI) scans (T2-WML). This may partly reflect pathological heterogeneity in WMLs, which is not apparent on T2w scans. Objective: To determine if ADvanced IMage Algebra (ADIMA), a novel MRI post-processing method, can reveal WML heterogeneity from proton-density weighted (PDw) and T2w images. Methods: We obtained conventional PDw and T2w images from 10 patients with relapsing–remitting MS (RRMS) and ADIMA images were calculated from these. We classified all WML into bright (ADIMA-b) and dark (ADIMA-d) sub-regions, which were segmented. We obtained conventional T2-WML and T1-WML volumes for comparison, as well as the following quantitative magnetic resonance parameters: magnetisation transfer ratio (MTR), T1 and T2. Also, we assessed the reproducibility of the segmentation for ADIMA-b, ADIMA-d and T2-WML. Results: Our study’s ADIMA-derived volumes correlated with conventional lesion volumes ( p < 0.05). ADIMA-b exhibited higher T1 and T2, and lower MTR than the T2-WML ( p < 0.001). Despite the similarity in T1 values between ADIMA-b and T1-WML, these regions were only partly overlapping with each other. ADIMA-d exhibited quantitative characteristics similar to T2-WML; however, they were only partly overlapping. Mean intra- and inter-observer coefficients of variation for ADIMA-b, ADIMA-d and T2-WML volumes were all < 6 % and < 10 %, respectively. Conclusion: ADIMA enabled the simple classification of WML into two groups having different quantitative magnetic resonance properties, which can be reproducibly distinguished.


2013 ◽  
Vol 38 (6) ◽  
pp. 1454-1461 ◽  
Author(s):  
Alina Jurcoane ◽  
Marlies Wagner ◽  
Christoph Schmidt ◽  
Christoph Mayer ◽  
Rene-Maxime Gracien ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Elizaveta Lavrova ◽  
Emilie Lommers ◽  
Henry C. Woodruff ◽  
Avishek Chatterjee ◽  
Pierre Maquet ◽  
...  

Conventional magnetic resonance imaging (cMRI) is poorly sensitive to pathological changes related to multiple sclerosis (MS) in normal-appearing white matter (NAWM) and gray matter (GM), with the added difficulty of not being very reproducible. Quantitative MRI (qMRI), on the other hand, attempts to represent the physical properties of tissues, making it an ideal candidate for quantitative medical image analysis or radiomics. We therefore hypothesized that qMRI-based radiomic features have added diagnostic value in MS compared to cMRI. This study investigated the ability of cMRI (T1w) and qMRI features extracted from white matter (WM), NAWM, and GM to distinguish between MS patients (MSP) and healthy control subjects (HCS). We developed exploratory radiomic classification models on a dataset comprising 36 MSP and 36 HCS recruited in CHU Liege, Belgium, acquired with cMRI and qMRI. For each image type and region of interest, qMRI radiomic models for MS diagnosis were developed on a training subset and validated on a testing subset. Radiomic models based on cMRI were developed on the entire training dataset and externally validated on open-source datasets with 167 HCS and 10 MSP. Ranked by region of interest, the best diagnostic performance was achieved in the whole WM. Here the model based on magnetization transfer imaging (a type of qMRI) features yielded a median area under the receiver operating characteristic curve (AUC) of 1.00 in the testing sub-cohort. Ranked by image type, the best performance was achieved by the magnetization transfer models, with median AUCs of 0.79 (0.69–0.90, 90% CI) in NAWM and 0.81 (0.71–0.90) in GM. The external validation of the T1w models yielded an AUC of 0.78 (0.47–1.00) in the whole WM, demonstrating a large 95% CI and a low sensitivity of 0.30 (0.10–0.70). This exploratory study indicates that qMRI radiomics could provide efficient diagnostic information using NAWM and GM analysis in MSP. T1w radiomics could be useful for a fast and automated check of conventional MRI for WM abnormalities once acquisition and reconstruction heterogeneities have been overcome. Further prospective validation is needed, involving more data for better interpretation and generalization of the results.


2021 ◽  
Vol 12 ◽  
Author(s):  
Valeria Barletta ◽  
Elena Herranz ◽  
Constantina A. Treaba ◽  
Ambica Mehndiratta ◽  
Russell Ouellette ◽  
...  

Cortical demyelination occurs early in multiple sclerosis (MS) and relates to disease outcome. The brain cortex has endogenous propensity for remyelination as proven from histopathology study. In this study, we aimed at characterizing cortical microstructural abnormalities related to myelin content by applying a novel quantitative MRI technique in early MS. A combined myelin estimation (CME) cortical map was obtained from quantitative 7-Tesla (7T) T2* and T1 acquisitions in 25 patients with early MS and 19 healthy volunteers. Cortical lesions in MS patients were classified based on their myelin content by comparison with CME values in healthy controls as demyelinated, partially demyelinated, or non-demyelinated. At follow-up, we registered changes in cortical lesions as increased, decreased, or stable CME. Vertex-wise analysis compared cortical CME in the normal-appearing cortex in 25 MS patients vs. 19 healthy controls at baseline and investigated longitudinal changes at 1 year in 10 MS patients. Measurements from the neurite orientation dispersion and density imaging (NODDI) diffusion model were obtained to account for cortical neurite/dendrite loss at baseline and follow-up. Finally, CME maps were correlated with clinical metrics. CME was overall low in cortical lesions (p = 0.03) and several normal-appearing cortical areas (p &lt; 0.05) in the absence of NODDI abnormalities. Individual cortical lesion analysis revealed, however, heterogeneous CME patterns from extensive to partial or absent demyelination. At follow-up, CME overall decreased in cortical lesions and non-lesioned cortex, with few areas showing an increase (p &lt; 0.05). Cortical CME maps correlated with processing speed in several areas across the cortex. In conclusion, CME allows detection of cortical microstructural changes related to coexisting demyelination and remyelination since the early phases of MS, and shows to be more sensitive than NODDI and relates to cognitive performance.


Sign in / Sign up

Export Citation Format

Share Document