Quantification of tissue plasma volume in the rat by contrast-enhanced magnetic resonance imaging

1993 ◽  
Vol 30 (1) ◽  
pp. 76-81 ◽  
Author(s):  
Ryohei Kuwatsuru ◽  
David M. Shames ◽  
Andreas Mühler ◽  
Jan Mintorovitch ◽  
Vladimir Vexler ◽  
...  
1998 ◽  
Vol 88 (4) ◽  
pp. 984-992 ◽  
Author(s):  
Jean-Francois Payen ◽  
Albert Vath ◽  
Blanche Koenigsberg ◽  
Virginie Bourlier ◽  
Michel Decorps

Background Noninvasive techniques used to determine the changes in cerebral blood volume in response to carbon dioxide are hampered by their limited spatial or temporal resolution or both. Using steady state contrast-enhanced magnetic resonance imaging, the authors determined regional changes in cerebral plasma volume (CPV) induced by hypercapnia in halothane-anesthetized rats. Methods Cerebral plasma volume was determined during normocapnia, hypercapnia and recovery in the dorsoparietal neocortex and striatum of each hemisphere, in cerebellum, and in extracerebral tissue of rats with either intact carotid arteries (group 1) or unilateral common carotid ligation (group 2). Another group was studied without injection of a contrast agent (group 3). Results Hypercapnia (partial pressure of carbon dioxide in arterial blood [PaCO2] approximately 65 mmHg) resulted in a significant increase in CPV in the striatum (+42 +/- 8%), neocortex (+34 +/- 6%), and cerebellum (+49 +/- 12%) compared with normocapnic CPV values (group 1). Carotid ligation (group 2) led to a marked reduction of the CPV response to hypercapnia in the ipsilateral striatum (+23 +/- 14%) and neocortex (+27 +/- 17%) compared with the unclamped side (+34 +/- 15% and +38 +/- 16%, respectively). No significant changes in CPV were found in extracerebral tissue. In both groups, the CPV changes were reversed by the carbon dioxide washout period. Negligible changes in contrast imaging were detected during hypercapnia without administration of the contrast agent (group 3). Conclusions The contrast-enhanced magnetic resonance imaging technique is sensitive to detect noninvasively regional CPV changes induced by hypercapnia in rat brain. This could be of clinical interest for determining the cerebrovascular reactivity among different brain regions.


2021 ◽  
Vol 9 (7) ◽  
pp. 1781-1786
Author(s):  
Ze’ai Wang ◽  
Yanfeng Wang ◽  
Yuan Wang ◽  
Chaogang Wei ◽  
Yibin Deng ◽  
...  

Biomineralized iron oxide–polydopamine hybrid nanodots are constructed using albumin nanoreactors to facilitate contrast-enhanced T1-weighted magnetic resonance imaging as well as photothermal therapeutic efficacy.


2021 ◽  
Vol 22 (9) ◽  
pp. 4586
Author(s):  
Marta Orts-Arroyo ◽  
Amadeo Ten-Esteve ◽  
Sonia Ginés-Cárdenas ◽  
Isabel Castro ◽  
Luis Martí-Bonmatí ◽  
...  

The paramagnetic gadolinium(III) ion is used as contrast agent in magnetic resonance (MR) imaging to improve the lesion detection and characterization. It generates a signal by changing the relaxivity of protons from associated water molecules and creates a clearer physical distinction between the molecule and the surrounding tissues. New gadolinium-based contrast agents displaying larger relaxivity values and specifically targeted might provide higher resolution and better functional images. We have synthesized the gadolinium(III) complex of formula [Gd(thy)2(H2O)6](ClO4)3·2H2O (1) [thy = 5-methyl-1H-pyrimidine-2,4-dione or thymine], which is the first reported compound based on gadolinium and thymine nucleobase. 1 has been characterized through UV-vis, IR, SEM-EDAX, and single-crystal X-ray diffraction techniques, and its magnetic and relaxometric properties have been investigated by means of SQUID magnetometer and MR imaging phantom studies, respectively. On the basis of its high relaxivity values, this gadolinium(III) complex can be considered a suitable candidate for contrast-enhanced magnetic resonance imaging.


Head & Neck ◽  
2021 ◽  
Author(s):  
Soumya Ranjan Malla ◽  
Ashu Seith Bhalla ◽  
Smita Manchanda ◽  
Devasenathipathy Kandasamy ◽  
Rakesh Kumar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document