Metabolic myopathy in canine muscle-type phosphofructokinase deficiency

1988 ◽  
Vol 11 (12) ◽  
pp. 1260-1265 ◽  
Author(s):  
Urs Giger ◽  
Zohar Argov ◽  
Mitch Schnall ◽  
William J. Bank ◽  
Britton Chance
Blood ◽  
1980 ◽  
Vol 55 (4) ◽  
pp. 629-635
Author(s):  
S Vora ◽  
L Corash ◽  
WK Engel ◽  
S Durham ◽  
C Seaman ◽  
...  

Normal human erythrocyte phosphofructokinase (ATP:c D-fructose-6, P-1- phosphotransferase, EC 2.7.1.11; PFK) has recently been shown to consist of a heterogeneous mixture of five tetrameric isozymes: M4, M3L, M2L2, ML3, and L4 (M, muscle type; L, liver type). In the light of these findings, we have investigated the molecular basis of the inherited erythrocyte PFK deficiency associated with myopathy and hemolysis (Tarui disease). The propositus, a 31-yr-old male, suffered from muscle weakness and myoglobinuria on exertion. He showed mild erythrocytosis despite laboratory evidence of hemolysis. In his erythrocytes a metabolic crossover point was found at the level of PFK; 2,3-diphosphoglycerate (2,3-DPG) was also significantly reduced. The PFK from the patient's erythrocytes consisted exclusively of the L4 isozyme, and there was a complete absence of the other four. The leukocyte and platelet PFKs from the patient showed normal activities, chromatographic profiles, and precipitation with anti-M4 antibody. These studies provide direct evidence that in Tarui disease the M-type subunits are absent; but the liver- and platelet-type subunits of PFK are unaffected. The paradox of mild erythrocytosis despite hemolysis reflects the decreased production of 2,3-DPG.


Blood ◽  
1980 ◽  
Vol 55 (4) ◽  
pp. 629-635 ◽  
Author(s):  
S Vora ◽  
L Corash ◽  
WK Engel ◽  
S Durham ◽  
C Seaman ◽  
...  

Abstract Normal human erythrocyte phosphofructokinase (ATP:c D-fructose-6, P-1- phosphotransferase, EC 2.7.1.11; PFK) has recently been shown to consist of a heterogeneous mixture of five tetrameric isozymes: M4, M3L, M2L2, ML3, and L4 (M, muscle type; L, liver type). In the light of these findings, we have investigated the molecular basis of the inherited erythrocyte PFK deficiency associated with myopathy and hemolysis (Tarui disease). The propositus, a 31-yr-old male, suffered from muscle weakness and myoglobinuria on exertion. He showed mild erythrocytosis despite laboratory evidence of hemolysis. In his erythrocytes a metabolic crossover point was found at the level of PFK; 2,3-diphosphoglycerate (2,3-DPG) was also significantly reduced. The PFK from the patient's erythrocytes consisted exclusively of the L4 isozyme, and there was a complete absence of the other four. The leukocyte and platelet PFKs from the patient showed normal activities, chromatographic profiles, and precipitation with anti-M4 antibody. These studies provide direct evidence that in Tarui disease the M-type subunits are absent; but the liver- and platelet-type subunits of PFK are unaffected. The paradox of mild erythrocytosis despite hemolysis reflects the decreased production of 2,3-DPG.


2012 ◽  
Vol 26 (6) ◽  
pp. 243-247 ◽  
Author(s):  
G. Inal Gultekin ◽  
K. Raj ◽  
S. Lehman ◽  
A. Hillström ◽  
U. Giger

2011 ◽  
Vol 47 (2) ◽  
pp. 145-150 ◽  
Author(s):  
Anna Hillström ◽  
Harold Tvedten ◽  
André Rowe ◽  
Urs Giger

Hereditary phosphofructokinase (PFK) deficiency was diagnosed in two Wachtelhund dogs and suspected in three related Wachtelhund dogs with exercise intolerance, hemolytic anemia, and pigmenturia. Severe, persistent reticulocytosis in light of only mild anemia together with hemoglobinuria after strenuous exercise suggested PFK deficiency. Low erythrocyte PFK activity together with low 2,3-diphosphoglycerate concentrations and a high hemoglobin-oxygen affinity confirmed the diagnosis. The PFK deficiency is due to a single missense mutation in the muscle-type PFK M-PFK gene in English springer and American cocker spaniels, whippets, and mixed-breed dogs; however, these PFK-deficient Wachtelhunds do not have the same PFK mutation.


1996 ◽  
Vol 271 (33) ◽  
pp. 20070-20074 ◽  
Author(s):  
Bruce F. Smith ◽  
Hansell Stedman ◽  
Yashoda Rajpurohit ◽  
Paula S. Henthorn ◽  
John H. Wolfe ◽  
...  

2020 ◽  
Vol 1 (1) ◽  
pp. 65-72
Author(s):  
L.A. Kotkas ◽  
◽  
A.S. Donskoj ◽  
A.A. ZHarkovskij ◽  
◽  
...  

2011 ◽  
Vol 436 (2) ◽  
pp. 437-445 ◽  
Author(s):  
Zhe Chen ◽  
Tong-Jin Zhao ◽  
Jie Li ◽  
Yan-Song Gao ◽  
Fan-Guo Meng ◽  
...  

Muscle contraction requires high energy fluxes, which are supplied by MM-CK (muscle-type creatine kinase) which couples to the myofibril. However, little is known about the detailed molecular mechanisms of how MM-CK participates in and is regulated during muscle contraction. In the present study, MM-CK is found to physically interact with the slow skeletal muscle-type MyBPC1 (myosin-binding protein C1). The interaction between MyBPC1 and MM-CK depended on the creatine concentration in a dose-dependent manner, but not on ATP, ADP or phosphocreatine. The MyBPC1–CK interaction favoured acidic conditions, and the two molecules dissociated at above pH 7.5. Domain-mapping experiments indicated that MM-CK binds to the C-terminal domains of MyBPC1, which is also the binding site of myosin. The functional coupling of myosin, MyBPC1 and MM-CK is further corroborated using an ATPase activity assay in which ATP expenditure accelerates upon the association of the three proteins, and the apparent Km value of myosin is therefore reduced. The results of the present study suggest that MyBPC1 acts as an adaptor to connect the ATP consumer (myosin) and the regenerator (MM-CK) for efficient energy metabolism and homoeostasis.


2006 ◽  
Vol 7 (3) ◽  
pp. 163-174 ◽  
Author(s):  
Myoung-Ae Choe ◽  
Gyeong Ju An ◽  
Yoon-Kyong Lee ◽  
Ji Hye Im ◽  
Smi Choi-Kwon ◽  
...  

This study examined the effects of daily low-intensity exercise following acute stroke on mass, Type I and II fiber cross-sectional area, and myofibrillar protein content of hind-limb muscles in a rat model. Adult male Sprague-Dawley rats were randomly assigned to 1 of 4 groups (n = 7-9 per group): stroke (occlusion of the right middle cerebral artery [RMCA]), control (sham RMCA procedure), exercise, and stroke-exercise. Beginning 48 hours post-stroke induction/sham operation, rats in the exercise group had 6 sessions of exercise in which they ran on a treadmill at grade 10 for 20 min/day at 10 m/min. At 8 days poststroke, all rats were anesthetized and soleus, plantaris, and gastrocnemius muscles were dissected from both the affected and unaffected sides. After 6 sessions of exercise following acute ischemic stroke, the stroke-exercise group showed the following significant (p < .05) increases compared to the stroke-only group: body weight and dietary intake, muscle weight of affected soleus and both affected and unaffected gastrocnemius muscle, Type I fiber cross-sectional area of affected soleus and both affected and unaffected gastrocnemius muscle, Type II fiber cross-sectional area of the unaffected soleus, both affected and unaffected plantaris and gastrocnemius muscle, Type II fiber distribution of affected gastrocnemius muscle, and myofibrillar protein content of both affected and unaffected soleus muscle. Daily low-intensity exercise following acute stroke attenuates hind-limb muscle atrophy in both affected and unaffected sides. The effects of exercise are more pronounced in the soleus and gastrocnemius as compared to the plantaris muscle.


2021 ◽  
Vol 56 (2) ◽  
pp. 124-125
Author(s):  
Josef Finsterer ◽  
Concepción Maeztu
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document