scholarly journals Diffusion MRI microstructure models with in vivo human brain Connectome data: results from a multi-group comparison

2017 ◽  
Vol 30 (9) ◽  
pp. e3734 ◽  
Author(s):  
Uran Ferizi ◽  
Benoit Scherrer ◽  
Torben Schneider ◽  
Mohammad Alipoor ◽  
Odin Eufracio ◽  
...  
2020 ◽  
Vol 30 (8) ◽  
pp. 4496-4514 ◽  
Author(s):  
Fakhereh Movahedian Attar ◽  
Evgeniya Kirilina ◽  
Daniel Haenelt ◽  
Kerrin J Pine ◽  
Robert Trampel ◽  
...  

Abstract Short association fibers (U-fibers) connect proximal cortical areas and constitute the majority of white matter connections in the human brain. U-fibers play an important role in brain development, function, and pathology but are underrepresented in current descriptions of the human brain connectome, primarily due to methodological challenges in diffusion magnetic resonance imaging (dMRI) of these fibers. High spatial resolution and dedicated fiber and tractography models are required to reliably map the U-fibers. Moreover, limited quantitative knowledge of their geometry and distribution makes validation of U-fiber tractography challenging. Submillimeter resolution diffusion MRI—facilitated by a cutting-edge MRI scanner with 300 mT/m maximum gradient amplitude—was used to map U-fiber connectivity between primary and secondary visual cortical areas (V1 and V2, respectively) in vivo. V1 and V2 retinotopic maps were obtained using functional MRI at 7T. The mapped V1–V2 connectivity was retinotopically organized, demonstrating higher connectivity for retinotopically corresponding areas in V1 and V2 as expected. The results were highly reproducible, as demonstrated by repeated measurements in the same participants and by an independent replication group study. This study demonstrates a robust U-fiber connectivity mapping in vivo and is an important step toward construction of a more complete human brain connectome.


Author(s):  
Uran Ferizi ◽  
Torben Schneider ◽  
Eleftheria Panagiotaki ◽  
Gemma Nedjati-Gilani ◽  
Hui Zhang ◽  
...  
Keyword(s):  

2013 ◽  
Vol 72 (6) ◽  
pp. 1785-1792 ◽  
Author(s):  
Uran Ferizi ◽  
Torben Schneider ◽  
Eleftheria Panagiotaki ◽  
Gemma Nedjati-Gilani ◽  
Hui Zhang ◽  
...  

2019 ◽  
Vol 225 (4) ◽  
pp. 1277-1291 ◽  
Author(s):  
Susie Y. Huang ◽  
Qiyuan Tian ◽  
Qiuyun Fan ◽  
Thomas Witzel ◽  
Barbara Wichtmann ◽  
...  

Author(s):  
Uran Ferizi ◽  
Torben Schneider ◽  
Maira Tariq ◽  
Claudia A. M. Wheeler-Kingshott ◽  
Hui Zhang ◽  
...  
Keyword(s):  

1994 ◽  
Vol 31 (2) ◽  
pp. 185
Author(s):  
Yong Whee Bahk ◽  
Kyung Sub Shinn ◽  
Tae Suk Suh ◽  
Bo Young Choe ◽  
Kyo Ho Choi

Author(s):  
Y Liu ◽  
D Gebrezgiabhier ◽  
J Arturo Larco ◽  
S Madhani ◽  
A Shahid ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 914
Author(s):  
Melanie V. Brady ◽  
Flora M. Vaccarino

The complexities of human neurodevelopment have historically been challenging to decipher but continue to be of great interest in the contexts of healthy neurobiology and disease. The classic animal models and monolayer in vitro systems have limited the types of questions scientists can strive to answer in addition to the technical ability to answer them. However, the tridimensional human stem cell-derived organoid system provides the unique opportunity to model human development and mimic the diverse cellular composition of human organs. This strategy is adaptable and malleable, and these neural organoids possess the morphogenic sensitivity to be patterned in various ways to generate the different regions of the human brain. Furthermore, recapitulating human development provides a platform for disease modeling. One master regulator of human neurodevelopment in many regions of the human brain is sonic hedgehog (SHH), whose expression gradient and pathway activation are responsible for conferring ventral identity and shaping cellular phenotypes throughout the neural axis. This review first discusses the benefits, challenges, and limitations of using organoids for studying human neurodevelopment and disease, comparing advantages and disadvantages with other in vivo and in vitro model systems. Next, we explore the range of control that SHH exhibits on human neurodevelopment, and the application of SHH to various stem cell methodologies, including organoids, to expand our understanding of human development and disease. We outline how this strategy will eventually bring us much closer to uncovering the intricacies of human neurodevelopment and biology.


Sign in / Sign up

Export Citation Format

Share Document