scholarly journals On the role of large cross-sectional deformations in the nonlinear analysis of composite thin-walled structures

Author(s):  
E. Carrera ◽  
A. Pagani ◽  
R. Augello

AbstractThe geometrical nonlinear effects caused by large displacements and rotations over the cross section of composite thin-walled structures are investigated in this work. The geometrical nonlinear equations are solved within the finite element method framework, adopting the Newton–Raphson scheme and an arc-length method. Inherently, to investigate cross-sectional nonlinear kinematics, low- to higher-order theories are employed by using the Carrera unified formulation, which provides a tool to generate refined theories of structures in a systematic manner. In particular, beams and shell-like laminated composite structures are analyzed using a layerwise approach, according to which each layer has its own independent kinematics. Different stacking sequences are analyzed, to highlight the influence of the cross-ply angle on the static responses. The results show that the geometrical nonlinear effects play a crucial role, mainly when higher-order theories are utilized.

2021 ◽  
pp. 1-23
Author(s):  
M. Talele ◽  
M. van Tooren ◽  
A. Elham

Abstract An efficient, fully coupled beam model is developed to analyse laminated composite thin-walled structures with arbitrary cross-sections. The Euler–Lagrangian equations are derived from the kinematic relationships for a One-Dimensional (1D) beam representing Three-Dimensional (3D) deformations that take into account the cross-sectional stiffness of the composite structure. The formulation of the cross-sectional stiffness includes all the deformation effects and related elastic couplings. To circumvent the problem of shear locking, exact solutions to the approximating Partial Differential Equations (PDEs) are obtained symbolically instead of by numerical integration. The developed locking-free composite beam element results in an exact stiffness matrix and has super-convergent characteristics. The beam model is tested for different types of layup, and the results are validated by comparison with experimental results from literature.


Author(s):  
Jaffar Syed Mohammed Ali ◽  
Meftah Hrairi ◽  
Masturah Mohamad

An educational software which can aid students in the stress analysis of thin wall open sections made of composite material has been developed. The software enables students to easily calculate stresses in different shapes of thin wall open section and evaluate the stresses in each ply under shear and torsion. Results obtained through this software have been validated against ANSYS. The software is intended to be an educational tool for effective teaching and learning process on thin-walled structures, aircraft structures and composite structures courses.


2021 ◽  
Vol 166 ◽  
pp. 107965
Author(s):  
Xiangyang Xu ◽  
Erasmo Carrera ◽  
Riccardo Augello ◽  
Ehsan Daneshkhah ◽  
Hao Yang

2020 ◽  
Author(s):  
E. Carrera ◽  
◽  
A. Pagani ◽  
R. Augello

AbstractIn the framework of finite elements (FEs) applications, this paper proposes the use of the node-dependent kinematics (NDK) concept to the large deflection and post-buckling analysis of thin-walled metallic one-dimensional (1D) structures. Thin-walled structures could easily exhibit local phenomena which would require refinement of the kinematics in parts of them. This fact is particularly true whenever these thin structures undergo large deflection and post-buckling. FEs with kinematics uniform in each node could prove inappropriate or computationally expensive to solve these locally dependent deformations. The concept of NDK allows kinematics to be independent in each element node; therefore, the theory of structures changes continuously over the structural domain. NDK has been successfully applied to solve linear problems by the authors in previous works. It is herein extended to analyze in a computationally efficient manner nonlinear problems of beam-like structures. The unified 1D FE model in the framework of the Carrera Unified Formulation (CUF) is referred to. CUF allows introducing, at the node level, any theory/kinematics for the evaluation of the cross-sectional deformations of the thin-walled beam. A total Lagrangian formulation along with full Green–Lagrange strains and 2nd Piola Kirchhoff stresses are used. The resulting geometrical nonlinear equations are solved with the Newton–Raphson linearization and the arc-length type constraint. Thin-walled metallic structures are analyzed, with symmetric and asymmetric C-sections, subjected to transverse and compression loadings. Results show how FE models with NDK behave as well as their convenience with respect to the classical FE analysis with the same kinematics for the whole nodes. In particular, zones which undergo remarkable deformations demand high-order theories of structures, whereas a lower-order theory can be employed if no local phenomena occur: this is easily accomplished by NDK analysis. Remarkable advantages are shown in the analysis of thin-walled structures with transverse stiffeners.


2016 ◽  
Vol 12 (3) ◽  
pp. 558-576 ◽  
Author(s):  
Aníbal J.J. Valido ◽  
João Barradas Cardoso

Purpose The purpose of this paper is to present a design sensitivity analysis continuum formulation for the cross-section properties of thin-walled laminated composite beams. These properties are expressed as integrals based on the cross-section geometry, on the warping functions for torsion, on shear bending and shear warping, and on the individual stiffness of the laminates constituting the cross-section. Design/methodology/approach In order to determine its properties, the cross-section geometry is modeled by quadratic isoparametric finite elements. For design sensitivity calculations, the cross-section is modeled throughout design elements to which the element sensitivity equations correspond. Geometrically, the design elements may coincide with the laminates that constitute the cross-section. Findings The developed formulation is based on the concept of adjoint system, which suffers a specific adjoint warping for each of the properties depending on warping. The lamina orientation and the laminate thickness are selected as design variables. Originality/value The developed formulation can be applied in a unified way to open, closed or hybrid cross-sections.


2014 ◽  
Vol 553 ◽  
pp. 667-672
Author(s):  
R. Emre Erkmen

Thin-walled members that have one dimension relatively large in comparison to the cross-sectional dimensions are usually modelled by using beam-column type finite element formulations. Beam-column elements however, are based on the assumption of rigid cross-section, thus they cannot consider the cross-sectional deformations such as local buckling and only allows considerations of the beam axis behaviour such as flexural or lateral-torsional buckling. Shell-type finite elements can be used to model the structure in order to consider these local deformation effects. Based on the Bridging multi-scale approach, this study proposes a numerical technique that is able to split the global analysis, which is performed by using simple beam-type elements, from the local analysis which is based on more sophisticated shell-type elements. As a result, the proposed multi-scale method allows the usage of shell elements in a local region to incorporate the local deformation effects on the overall behaviour of thin-walled members without necessitating a shell-type model for the whole member.


1993 ◽  
Vol 115 (4A) ◽  
pp. 432-440 ◽  
Author(s):  
C. Ribreau ◽  
S. Naili ◽  
M. Bonis ◽  
A. Langlet

The topic of this study concerns principally representative models of some elliptical thin-walled anatomic vessels and polymeric tubes under uniform negative transmural pressure p (internal pressure minus external pressure). The ellipse’s ellipticity ko, defined as the major-to-minor axis ratio, varies from 1 up to 10. As p decreases from zero, at first the cross-section becomes somewhat oval, then the opposite sides touch in one point at the first-contact pressure pc. If p is lowered beneath pc, the curvature of the cross-section at the point of contact decreases until it becomes zero at the osculation pressure or the first line-contact pressure p1. For p<p1, the contact occurs along a straight-line segment, the length of which increases as p decreases. The pressures pc and p1 are determined numerically for various values of the wall thickness of the tubes. The nature of contact is especially described. The solution of the related nonlinear, two-boundary-values problem is compared with previous experimental results which give the luminal cross-sectional area (from two tubes), and the area of the mid-cross-section (from a third tube).


Sign in / Sign up

Export Citation Format

Share Document