Facile fabrication of organically modified boron nitride nanosheets and its effect on the thermal stability, flame retardant, and mechanical properties of thermoplastic polyurethane

2018 ◽  
Vol 29 (9) ◽  
pp. 2545-2552 ◽  
Author(s):  
Wei Cai ◽  
Xiaowei Mu ◽  
Ying Pan ◽  
Wenwen Guo ◽  
Junling Wang ◽  
...  
RSC Advances ◽  
2021 ◽  
Vol 11 (61) ◽  
pp. 38374-38382
Author(s):  
Bing Wang ◽  
Haifeng Ji ◽  
Xiaojie Zhang ◽  
Xiongwei Qu

The PEI-grafted boron nitride nanosheets were successfully prepared via sand-milling process, which were doped into thermoplastic polyurethane matrix for better in-plane thermal conductivity while maintaining insulation properties.


RSC Advances ◽  
2014 ◽  
Vol 4 (83) ◽  
pp. 44282-44290 ◽  
Author(s):  
Jun Hou ◽  
Guohua Li ◽  
Na Yang ◽  
Lili Qin ◽  
Maryam E. Grami ◽  
...  

The fabricated surface modified boron nitride epoxy composites exhibit high thermal conductivity, superior thermal stability and good mechanical properties while retaining good electrical insulation properties.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1251
Author(s):  
Yilin Liu ◽  
Bin Li ◽  
Miaojun Xu ◽  
Lili Wang

Ethylene vinyl acetate (EVA) copolymer has been used extensively in many fields. However, EVA is flammable and releases CO gas during burning. In this work, a composite flame retardant with ammonium polyphosphate (APP), a charring–foaming agent (CFA), and a layered double hydroxide (LDH) containing rare-earth elements (REEs) was obtained and used to improve the flame retardancy, thermal stability, and smoke suppression for an EVA matrix. The thermal analysis showed that the maximum thermal degradation temperature of all composites increased by more than 37 °C compared with that of pure EVA. S-LaMgAl/APP/CFA/EVA, S-CeMgAl/APP/CFA/EVA, and S-NdMgAl/APP/CFA/EVA could achieve self-extinguishing behavior according to the UL-94 tests (V-0 rating). The peak heat release rate (pk-HRR) indicated that all LDHs containing REEs obviously reduced the fire strength in comparison with S-MgAl. In particular, pk-HRR of S-LaMgAl/APP/CFA/EVA, S-CeMgAl/APP/CFA/EVA and S-NdMgAl/APP/CFA/EVA were all decreased by more than 82% in comparison with pure EVA. Furthermore, the total heat release (THR), smoke production rate (SPR), and production rate of CO (COP) also decreased significantly. The average mass loss rate (AMLR) confirmed that the flame retardant exerted an effect in the condensed phase of the composites. Meanwhile, the combination of APP, CFA, and LDH containing REEs allowed the EVA matrix to maintain good mechanical properties.


2019 ◽  
Vol 90 (5-6) ◽  
pp. 512-522 ◽  
Author(s):  
Hong Liu ◽  
Yang Du ◽  
Shaohua Lei ◽  
Zhuoqun Liu

Boron nitride nanosheets (BNN) were prepared by molten hydroxide-assisted liquid exfoliation from hexagonal boron nitride powder with an effectively high yield, and then modified with hexachlorocyclotriphosphazene (HCCP) to obtain HCCP-BNN. The series of samples were applied to prepare flame-retardant cotton fabrics with the impregnation-drying method, and successful treatment was confirmed by scanning electron microscopy. The combustion performance of the as-prepared cotton fabrics was tested and evaluated. After coating with HCCP-BNN, the combustion rate of the fabric is reduced in vertical and horizontal combustion conditions and the limiting oxygen-index value of cotton fabric increases to 24.1, becoming less flammable than the blank cotton. The fibrous structure of the BNN and HCCP-BNN coated fabrics is relatively complete after combustion, which indicates that BNN have a certain protective effect on the fabric. The results demonstrate HCCP-BNN as an effective flame-retardant for cotton fabrics.


Sign in / Sign up

Export Citation Format

Share Document