Synthesis of shape memory polyurethane/clay nanocomposites and analysis of shape memory, thermal, and mechanical properties

2012 ◽  
Vol 33 (6) ◽  
pp. 843-849 ◽  
Author(s):  
M. Haghayegh ◽  
G. Mir Mohamad Sadeghi
2014 ◽  
Vol 215 (24) ◽  
pp. 2420-2429 ◽  
Author(s):  
Sayyeda M. Hasan ◽  
Jeffery E. Raymond ◽  
Thomas S. Wilson ◽  
Brandis K. Keller ◽  
Duncan J. Maitland

Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1502
Author(s):  
Eliezer Velásquez ◽  
Sebastián Espinoza ◽  
Ximena Valenzuela ◽  
Luan Garrido ◽  
María José Galotto ◽  
...  

The deterioration of the physical–mechanical properties and loss of the chemical safety of plastics after consumption are topics of concern for food packaging applications. Incorporating nanoclays is an alternative to improve the performance of recycled plastics. However, properties and overall migration from polymer/clay nanocomposites to food require to be evaluated case-by-case. This work aimed to investigate the effect of organic modifier types of clays on the structural, thermal and mechanical properties and the overall migration of nanocomposites based on 50/50 virgin and recycled post-consumer polypropylene blend (VPP/RPP) and organoclays for food packaging applications. The clay with the most hydrophobic organic modifier caused higher thermal stability of the nanocomposites and greater intercalation of polypropylene between clay mineral layers but increased the overall migration to a fatty food simulant. This migration value was higher from the 50/50 VPP/RPP film than from VPP. Nonetheless, clays reduced the migration and even more when the clay had greater hydrophilicity because of lower interactions between the nanocomposite and the fatty simulant. Conversely, nanocomposites and VPP/RPP control films exhibited low migration values in the acid and non-acid food simulants. Regarding tensile parameters, elongation at break values of PP film significantly increased with RPP addition, but the incorporation of organoclays reduced its ductility to values closer to the VPP.


2021 ◽  
pp. 095400832199676
Author(s):  
Yuting Ouyang ◽  
Qiu Zhang ◽  
Xiukun Liu ◽  
Ruan Hong ◽  
Xu Xu ◽  
...  

Different ionic liquid modified graphene nanosheets (IG) were induced into polyimide (PI) to improve the tribological, thermal, and mechanical properties of shape memory IG/PI composites. The results demonstrated that when using 1-aminoethyl-3-methylimidazole bromide to modify graphene nanosheets (IG-1), the laser-driven shape recovery rate of IG-1/PI composites (IGPI-1) reached 73.02%, which was 49.36% higher than that of pure PI. In addition, the IGPI-1 composite materials reached the maximum shape recovery rate within 15 s. Additionally, under dry sliding, the addition of IG can significantly improve the tribological properties of composite materials. IGPI-1 exhibited the best self-lubricating properties. Compared with pure PI, the friction coefficient (0.19) and wear rate (2.62 × 10–5) mm3/Nm) were reduced by 44.1% and 24.2%, respectively, and the T10% of IGPI-1 increased by 32.2°C. The Tg of IGPI-1 reached 256.5°C, which was 8.4°C higher than that of pure PI. In addition, the tensile strength and modulus of IGPI-1 reached 82.3 MPa and 1.18 GPa, which were significantly increased by 33.6% and 29.8%, respectively, compared with pure PI. We hope that this work will be helpful for the preparation of shape memory materials with excellent tribological, thermal, and mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document