scholarly journals Effect of Organic Modifier Types on the Physical–Mechanical Properties and Overall Migration of Post-Consumer Polypropylene/Clay Nanocomposites for Food Packaging

Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1502
Author(s):  
Eliezer Velásquez ◽  
Sebastián Espinoza ◽  
Ximena Valenzuela ◽  
Luan Garrido ◽  
María José Galotto ◽  
...  

The deterioration of the physical–mechanical properties and loss of the chemical safety of plastics after consumption are topics of concern for food packaging applications. Incorporating nanoclays is an alternative to improve the performance of recycled plastics. However, properties and overall migration from polymer/clay nanocomposites to food require to be evaluated case-by-case. This work aimed to investigate the effect of organic modifier types of clays on the structural, thermal and mechanical properties and the overall migration of nanocomposites based on 50/50 virgin and recycled post-consumer polypropylene blend (VPP/RPP) and organoclays for food packaging applications. The clay with the most hydrophobic organic modifier caused higher thermal stability of the nanocomposites and greater intercalation of polypropylene between clay mineral layers but increased the overall migration to a fatty food simulant. This migration value was higher from the 50/50 VPP/RPP film than from VPP. Nonetheless, clays reduced the migration and even more when the clay had greater hydrophilicity because of lower interactions between the nanocomposite and the fatty simulant. Conversely, nanocomposites and VPP/RPP control films exhibited low migration values in the acid and non-acid food simulants. Regarding tensile parameters, elongation at break values of PP film significantly increased with RPP addition, but the incorporation of organoclays reduced its ductility to values closer to the VPP.

2013 ◽  
Vol 844 ◽  
pp. 217-220 ◽  
Author(s):  
Uraiwan Sookyung ◽  
Woothichai Thaijaroen ◽  
Norbert Vennemann ◽  
Charoen Nakason

Sodium-montmorillonite (Na-MMT) nanoclay was modified with different types of alkylamine organic modifier including primary and quaternary alkylamines. Influence types of alkylamine on properties of natural rubber/clay nanocomposites was investigated. It was found that organoclays caused improvement of mechanical properties of natural rubber, and accelerated vulcanization reaction with higher degree of crosslinking. In addition, organoclay modified with quaternary alkylamine showed significance cure reversion phenomenon which caused reduction of thermal stability. On the other hand, primary alkylamine modified nanoclay caused improvement of thermal stability of natural rubber. Moreover, stress relaxation was observed at the melting temperature of the modifying agent.


2020 ◽  
Author(s):  
Itsaso Leceta ◽  
Cristina Alcalde ◽  
Marta Urdanpilleta ◽  
Pedro Guerrero ◽  
Koro de la Caba ◽  
...  

Abstract The use of L-fuzzy concept analysis for the determination of the formulations of gelatin-based films that fulfillspecifc functional properties is reported. The requirements of water contact angle (CA), water vapourtransmission rate (WVTR), L* and b* colour values, tensile strength (TS), elongation at break (EB) and glossvalues were specified for both fatty food packaging and wound healing applications. Once the requiredformulations were estimated by L-fuzzy concepts, the experimental results showed a high accordance with thepredicted values of the nal properties, as well as with the requirements. The errors were lower than 20% in allcases, except in colour (for food packaging) and gloss and elongation at break (for wound healing), in whichthe nal properties were even better that the estimations. This analysis allowed nding the requiredformulations in a highly cost-effective way.


2019 ◽  
Vol 33 (10) ◽  
pp. 1383-1395
Author(s):  
Hongjuan Zheng ◽  
Zhengqian Sun ◽  
Hongjuan Zhang

Poly(lactic acid) (PLA) has good environmental compatibility, however, its high brittleness, slow rate of crystallization, and low heat distortion temperature restrict its widespread use. To overcome these limitations, in this study, PLA was mixed with walnut shell (WS) powders. The effects of WS powders on the morphology and the thermal and mechanical properties of PLA were investigated. The products were characterized by differential scanning calorimetry (DSC), infrared (IR) spectroscopy, polarizing optical microscopy (POM), and various mechanical property testing techniques. The results showed that WS powders had a significant effect on the morphology and the thermal and mechanical properties of PLA. The tensile strength, impact strength, and elongation at break of the PLA/WS composites first increased and then decreased with the increasing addition of WS powders. When the addition of WS powders was about 0.5 wt%, they reached maximum values of 51.2 MPa, 23.3 MPa, and 19.0%, respectively. Compared with neat PLA, the spherulite grain size of the composites could be reduced and many irregular polygons were formed during crystallization. The melting, cold crystallization, and glass-transition temperatures of the composites were lower than those of neat PLA.


2013 ◽  
Vol 772 ◽  
pp. 34-37
Author(s):  
Hao Tang ◽  
Hai Tian Jiang ◽  
Bin Guo ◽  
Pan Xin Li

Corn starch was irradiated by 60Coγ ray, and then the thermoplastic starch plastic (TPS) was prepared by adding glycerol. Microstructure, thermal and mechanical properties of the corn starch and starch plastic were studied in details by FTIR, DSC and SEM. Results showed that the starch macromolecular structure was damaged by irradiation, and with increased irradiation time, the temperature of melt endothermic peak and tensile strength decreased, elongation at break increases for starch plastic, the thermoplastic property of starch was enhanced obviously.


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 417 ◽  
Author(s):  
Victor G. L. Souza ◽  
João R. A. Pires ◽  
Carolina Rodrigues ◽  
Isabel M. Coelhoso ◽  
Ana Luísa Fernando

Chitosan-based composites play an important role in food packaging applications and can be used either as films or as edible coatings. Due to their high costs and lower performance (i.e., lower barrier against water vapor, thermal, and mechanical properties) when compared to the traditional petroleum-based plastics, the use of such biopolymers in large-scale is still limited. Several approaches of chitosan composites in the packaging industry are emerging to overcome some of the disadvantages of pristine polymers. Thus, this work intends to present the current trends and the future challenges towards production and application of chitosan composites in the food packaging industry.


2012 ◽  
Vol 501 ◽  
pp. 366-371 ◽  
Author(s):  
Guang Yi Lin ◽  
Xue Chen Mu ◽  
Dian Wei Qu

Epoxy resin / clay nanocomposites prepared by shock wave method. The structure and mechanical properties including hardness, stress, strain and elongation at break were investigated. XRD was used to observe the interlayer spacing of the OMMT and SEM was used to survey the morphology of nanocomposites system. The results indicated that nano-montmorillonite can effectively increase the mechanical property of the material. The nano-montmorillonite was well dispersed in the epoxy matrix. The optimal process condition is that shock time 5min, nano-MMT content of 5%, duty cycle 1:3, shock depth 3cm.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Yueyun Zhou ◽  
Lifa Luo ◽  
Wenyong Liu ◽  
Guangsheng Zeng ◽  
Yi Chen

To overcome the poor toughness of PC/PLA blends due to the intrinsic properties of materials and poor compatibility, thermoplastic urethane (TPU) was added to PC/PLA blends as a toughener; meantime, catalyst di-n-butyltin oxide (DBTO) was also added for catalyzing transesterification of components in order to modify the compatibility of blends. The mechanical, thermal, and rheological properties of blends were investigated systematically. The results showed that the addition of TPU improves the toughness of PC/PLA blends significantly, with the increase of TPU, the elongation at break increases considerably, and the impact strength increases firstly and then falls, while the tensile strength decreases significantly and the blends exhibit a typical plastic fracture behavior. Meantime, TPU is conducive to the crystallinity of PLA in blends which is inhibited seriously by PC and damages the thermal stability of blends slightly. Moreover, the increased TPU makes the apparent viscosity of blends melt decrease due to the well melt fluidity of TPU; the melt is closer to the pseudoplasticity melt. Remarkably, the transesterification between the components improves the compatibility of blends significantly, and more uniform structure results in a higher crystallinity and better mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document