Reutilization of waste printed circuit boards nonmetallic powders in elastomer composites: Significant improvements of curing and mechanical properties

2020 ◽  
Vol 41 (6) ◽  
pp. 2224-2232
Author(s):  
Dechao Hu ◽  
Yuanfang Luo ◽  
Jing Lin ◽  
Yongjun Chen ◽  
Demin Jia
2018 ◽  
Vol 40 (3) ◽  
pp. 1170-1186 ◽  
Author(s):  
Tihomir Kovačević ◽  
Jelena Rusmirović ◽  
Nataša Tomić ◽  
Goran Mladenović ◽  
Miloš Milošević ◽  
...  

2010 ◽  
Vol 113-116 ◽  
pp. 1123-1127
Author(s):  
Nian Xin Zhou ◽  
Ya Qun He ◽  
Chen Long Duan ◽  
Shu Ai Wang

Comminution is a key part of the reutilization of discarded circuit board. In order to find out the most appropriate method of crushing, the characteristics of the materials and the mechanical properties of resistance impact of discarded circuit boards were studied. The substrate of circuit boards, slots of ISA and PCI were adopted as the specimen. The scanning electron microscope (SEM) and energy disperse X-ray spectroscopy (EDX) were used to characterize and analyze the combined state of the fracturing materials on the specimen surfaces after comminution. Results showed that the metals and nonmetals in the slots were crushed and dissociated easily.At the same time, the metal and nonmetal combined interfaces in the substrate have a trend to be broken and separated under the impact effect, which means the crushing circuit board has a favorable break effect under impact load.


2014 ◽  
Vol 13 (10) ◽  
pp. 2601-2607 ◽  
Author(s):  
Jae-chun Lee ◽  
Manoj Kumar ◽  
Min-Seuk Kim ◽  
Jinki Jeong ◽  
Kyoungkeun Yoo

JOM ◽  
2020 ◽  
Author(s):  
Joona Rajahalme ◽  
Siiri Perämäki ◽  
Roshan Budhathoki ◽  
Ari Väisänen

AbstractThis study presents an optimized leaching and electrowinning process for the recovery of copper from waste printed circuit boards including studies of chemical consumption and recirculation of leachate. Optimization of leaching was performed using response surface methodology in diluted sulfuric acid and hydrogen peroxide media. Optimum leaching conditions for copper were found by using 3.6 mol L−1 sulfuric acid, 6 vol.% hydrogen peroxide, pulp density of 75 g L−1 with 186 min leaching time at 20°C resulting in complete leaching of copper followed by over 92% recovery and purity of 99.9% in the electrowinning. Study of chemical consumption showed total decomposition of hydrogen peroxide during leaching, while changes in sulfuric acid concentration were minor. During recirculation of the leachate with up to 5 cycles, copper recovery and product purity remained at high levels while acid consumption was reduced by 60%.


2021 ◽  
Vol 9 (5) ◽  
pp. 895
Author(s):  
Carlotta Alias ◽  
Daniela Bulgari ◽  
Fabjola Bilo ◽  
Laura Borgese ◽  
Alessandra Gianoncelli ◽  
...  

A low-energy paradigm was adopted for sustainable, affordable, and effective urban waste valorization. Here a new, eco-designed, solid-state fermentation process is presented to obtain some useful bio-products by recycling of different wastes. Urban food waste and scraps from trimmings were used as a substrate for the production of citric acid (CA) by solid state fermentation of Aspergillus niger NRRL 334, with a yield of 20.50 mg of CA per gram of substrate. The acid solution was used to extract metals from waste printed circuit boards (WPCBs), one of the most common electronic waste. The leaching activity of the biological solution is comparable to a commercial CA one. Sn and Fe were the most leached metals (404.09 and 67.99 mg/L, respectively), followed by Ni and Zn (4.55 and 1.92 mg/L) without any pre-treatments as usually performed. Commercial CA extracted Fe more efficiently than the organic one (123.46 vs. 67.99 mg/L); vice versa, biological organic CA recovered Ni better than commercial CA (4.55 vs. 1.54 mg/L). This is the first approach that allows the extraction of metals from WPCBs through CA produced by A. niger directly grown on waste material without any sugar supplement. This “green” process could be an alternative for the recovery of valuable metals such as Fe, Pb, and Ni from electronic waste.


2021 ◽  
pp. 128512
Author(s):  
Shun-xiang Shi ◽  
Chun-chen Nie ◽  
Hong-hao Chang ◽  
Peng Wu ◽  
Zheng-jie Piao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document