Experimental Study on Impact Mechanical Properties of Waste Printed Circuit Boards

2010 ◽  
Vol 113-116 ◽  
pp. 1123-1127
Author(s):  
Nian Xin Zhou ◽  
Ya Qun He ◽  
Chen Long Duan ◽  
Shu Ai Wang

Comminution is a key part of the reutilization of discarded circuit board. In order to find out the most appropriate method of crushing, the characteristics of the materials and the mechanical properties of resistance impact of discarded circuit boards were studied. The substrate of circuit boards, slots of ISA and PCI were adopted as the specimen. The scanning electron microscope (SEM) and energy disperse X-ray spectroscopy (EDX) were used to characterize and analyze the combined state of the fracturing materials on the specimen surfaces after comminution. Results showed that the metals and nonmetals in the slots were crushed and dissociated easily.At the same time, the metal and nonmetal combined interfaces in the substrate have a trend to be broken and separated under the impact effect, which means the crushing circuit board has a favorable break effect under impact load.

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5186
Author(s):  
Szabolcs Fogarasi ◽  
Árpád Imre-Lucaci ◽  
Florica Imre-Lucaci

The study was carried out with the aim to demonstrate the applicability of a combined chemical–electrochemical process for the dismantling of waste printed circuit boards (WPCBs) created from different types of electronic equipment. The concept implies a simple and less polluting process that allows the chemical dismantling of WPCBs with the simultaneous recovery of copper from the leaching solution and the regeneration of the leaching agent. In order to assess the performance of the dismantling process, various tests were performed on different types of WPCBs using the 0.3 M FeCl3 in 0.5 M HCl leaching system. The experimental results show that, through the leaching process, the electronic components (EC) together with other fractions can be efficiently dismounted from the surface of WPCBs, with the parallel electrowinning of copper from the copper rich leaching solution. In addition, the process was scaled up for the dismantling of 100 kg/h WPCBs and modeled and simulated using process flow modelling software ChemCAD in order to assess the impact of all steps and equipment on the technical and environmental performance of the overall process. According to the results, the dismantling of 1 kg of WPCBs requires a total energy of 0.48 kWh, and the process can be performed with an overall low environmental impact based on the obtained general environmental indexes (GEIs) values.


Minerals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 79 ◽  
Author(s):  
Linlin Tong ◽  
Qianfei Zhao ◽  
Ali Kamali ◽  
Wolfgang Sand ◽  
Hongying Yang

The efficient extraction of copper as a valuable metal from waste printed circuit boards (WPCBs) is currently attracting growing interest. Here, we systematically investigated the impact of bacteria on the efficiency of copper leaching from WPCBs, and evaluated the effect of graphite on bioleaching performance. The HQ0211 bacteria culture containing Acidithiobacillus ferrooxidans, Ferroplasma acidiphilum, and Leptospirillum ferriphilum enhanced Cu-leaching performance in either ferric sulfate and sulfuric acid leaching, so a final leaching of up to 76.2% was recorded after 5 days. With the addition of graphite, the percentage of copper leaching could be increased to 80.5%. Single-factor experiments confirmed the compatibility of graphite with the HQ0211 culture, and identified the optimal pulp density of WPCBs, the initial pH, and the graphite content to be 2% (w/v), 1.6, and 2.5 g/L, respectively.


2010 ◽  
Vol 113-116 ◽  
pp. 730-734 ◽  
Author(s):  
Chen Long Duan ◽  
Yue Min Zhao ◽  
Jing Feng He ◽  
Nian Xin Zhou

The reutilization of waste Printed Circuit Boards (PCB) is a focused topic in the field of environment protection and resource recycling, and the crushing is the crucial process for recycling waste PCB. A hamper impacting crusher was used to achieve metals crushing liberation from non-metals, the liberation mechanism of PCB can be explained by dispersion liberation accompanied disengaging liberation. The Rosin-Rammler distribution model of crushed PCB particle was put forward. The evaluation indexes show that Rosin-Rammler function can accurately describe size distribution of PCB particles because the convergence property R2 is 0.99694 and fitting error E is 4.80658. The selective crushing is appearance with metals concentrated in coarser fraction and non-metals in finer size during comminution processing. The impact crushing is an effective method to metals liberation of PCB particles.


Author(s):  
Daren T. Slee

Abstract This paper is a review of propagating faults in printed circuit boards (PCBs) from the perspective of using the resulting burn and melted copper patterns to identify likely locations of fault initiation. Visual examination and x-ray imaging are the main techniques for examining PCB propagating faults. Once the likely fault initiation location has been identified, fault tree analysis can be used to determine the root cause for fault initiation. The paper discusses the mechanisms by which PCB propagating faults occur. The method of determining the likely area of initiation of the fault using visual examination of the PCB burn pattern, x-ray imaging, and the layout artwork for the PCB is discussed. The paper then goes on to discuss possible root-causes for the initiation of PCB propagating faults and some of their considerations.


1995 ◽  
Vol 117 (2) ◽  
pp. 248-252 ◽  
Author(s):  
M. N. Srinivasan ◽  
C. L. Hough ◽  
R. W. Bolton ◽  
F. M. Davis

The effect of drilling speed and the chip load on the hole quality in a printed circuit board was investigated. The hole defects considered were smear, burr, nail heading and void. Holes drilled with different combinations of the speed and chip load were sectioned and examined using a scanning electron microscope to identify and quantify the defects. Each defect was related to the drilling variables in order to explain the reason for its formation and discuss the broad trends in the relationships.


2018 ◽  
Vol 40 (3) ◽  
pp. 1170-1186 ◽  
Author(s):  
Tihomir Kovačević ◽  
Jelena Rusmirović ◽  
Nataša Tomić ◽  
Goran Mladenović ◽  
Miloš Milošević ◽  
...  

Proceedings ◽  
2019 ◽  
Vol 29 (1) ◽  
pp. 19
Author(s):  
Paul Ghioca ◽  
Madalina Elena David ◽  
Mircea Ioan Filipescu ◽  
Ramona Marina Grigorescu ◽  
Lorena Iancu ◽  
...  

The organic part of the waste printed circuit board (WPCB) contains mainly epoxy resin, fiberglass and brominated flame retardants, a composition that makes it quite difficult to reuse [1,2]. [...]


2019 ◽  
Vol 37 (6) ◽  
pp. 569-577 ◽  
Author(s):  
Rajesha K Das ◽  
Omdeo K Gohatre ◽  
Manoranjan Biswal ◽  
Smita Mohanty ◽  
SK Nayak

Extreme complexity in the range of metallic and non-metallic parts present in waste printed circuit boards leads to incineration for collecting valuable metals. The non-metallic parts of the printed circuit board can be used effectively without affecting the environment. In this study, the non-metallic parts of the printed circuit board, which is made up by cross-linked resin and fibre, was used as a filler in recycled plasticised polyvinyl chloride collected from waste wires and cables. The properties of the plasticised polyvinyl chloride matrix and plasticised polyvinyl chloride–non-metallic parts of printed circuit board composite were compared with each other by means of mechanical properties and thermal properties. Both mechanical and thermal properties results indicated that incorporation of non-metallic parts of printed circuit board significantly improved the hardness, stiffness, abrasion resistance and thermal stability of plasticised polyvinyl chloride–non-metallic parts of printed circuit board composite; however, the tensile strength of the composite material is not improved because of poor adhesion between the plasticised polyvinyl chloride matrix and non-metallic parts of printed circuit board filler. The poor chemical interaction is also observed from Fourier transform infrared spectroscopy results. This plasticised polyvinyl chloride–non-metallic parts of printed circuit board composite can reduce the leaching of a hazardous element from the printed circuit board with effective utilisation of plastics fraction from waste wires and cables.


Sign in / Sign up

Export Citation Format

Share Document