Effects of toughened polyester on fatigue behavior of glass fiber reinforced polyester composite for wind turbine blade

2020 ◽  
Author(s):  
Mohammad Amin Mousavi Khorasani ◽  
samaneh sahebian ◽  
Ahad Zabett
2013 ◽  
Vol 686 ◽  
pp. 118-124 ◽  
Author(s):  
Mohd Azuan Mohd Azlan ◽  
Muhamad Ridzuan Abdul Latif ◽  
Mohamad Zaki Abdullah ◽  
Kamal Arif Zainal Abidin ◽  
Azmi Abdul Wahab

This paper presents the monitoring of resin flow during resin infusion process in the fabrication of glass fiber reinforced polymer GRP wind turbine blade (WTB). Epoxy type of resin was used as the matrix and its viscosity and gel time were determined in-house. Next, resin infusions were done to obtain the permeability of the glass fiber in different directions (longitudinal and transverse), given the specific number of layers. The fabrication of composite WTB by resin infusion was conducted with the introduction of 'moldless' setup, where both upper and lower skins are covered by flexible mould/vacuum bag without any rigid female mould. However, a wooden core is used and acts as an “inner” mould to obtain the wind turbine shape. The whole infusion process was video recorded and the flow front pattern was traced at certain time intervals to investigate the infused percentage area over time. Afterward, guided by the traces of flow patterns on grid and video observation, 3D models of resin infused at interval times are generated in a CAD software. From the models, the area infused was determined. Percentage of area infused over time was compared with the analytical plot based on Darcy's law. A good agreement was found between the experimental observation and the theoretical plot.


2011 ◽  
Vol 87 ◽  
pp. 49-54 ◽  
Author(s):  
Hai Chen Lin

This thesis use AOC15/50 blade as baseline model which is a composite wind turbine blade made of glass/epoxy for a horizontal axis wind turbine. A finite element modeling of composite wind turbine blade was created using the SHELL element of ANSYS. Then we study how to use the carbon fiber material replaces the glass fiber to make the hybrid blade, and find a suitable layup to improve the performance of the blade. The hybrid blade was made through introducing carbon fibers. Different models, with introducing different number of carbon fibers, 75% carbon fibers replace unidirectional glass fibers in spar cap of blade model which can achieve best structure performance. The wind turbine blades are often fabricated by hand using multiple of glass fiber-reinforced polyester resin or glass fiber-reinforced epoxy resin. As commercial machines get bigger, this could not to meet the demands. The advantages of carbon fiber composite materials are used by blade producer. Studies show that carbon fiber has high strength-to-weight ratio and resistance fatigue properties. Carbon fiber is mixed with epoxy resin to make into carbon fiber-reinforced polymer. Carbon fiber-reinforced polymer is the one of best blade materials for resistance bad weather. The stiffness of carbon fiber composite is 2 or 3 times higher than glass fiber composite [1], but the cost of carbon fiber composite is 10 times higher than glass fiber composite. If all of wind turbine blades are made of carbon fiber composite, it will be very expensive. Therefore carbon/glass fiber hybrid composite blade has become a research emphasis in the field of blade materials. This paper gives an example of finite element modeling composite wind turbine blade in ANSYS by means of the medium-length blade of AOC 15/50 horizontal axis wind turbine. This model can be directly used in dynamics analysis and does not need to be imported from the CAD software into finite element program. This finite element modeling of composite wind turbine blade was created using the SHELL element of ANSYS. Then we study how to use the carbon fiber material replaces the glass fiber to make the hybrid blade, and find a suitable lay-up to improve the performance of the blade.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 622
Author(s):  
Yasser Elhenawy ◽  
Yasser Fouad ◽  
Haykel Marouani ◽  
Mohamed Bassyouni

This study aims to evaluate the effect of functionalized multi-walled carbon nanotubes (MWCNTs) on the performance of glass fiber (GF)-reinforced polypropylene (PP) for wind turbine blades. Support for theoretical blade movement of horizontal axis wind turbines (HAWTs), simulation, and analysis were performed with the Ansys computer package to gain insight into the durability of polypropylene-chopped E-glass for application in turbine blades under aerodynamic, gravitational, and centrifugal loads. Typically, polymer nanocomposites are used for small-scale wind turbine systems, such as for residential applications. Mechanical and physical properties of material composites including tensile and melt flow indices were determined. Surface morphology of polypropylene-chopped E-glass fiber and functionalized MWCNTs nanocomposites showed good distribution of dispersed phase. The effect of fiber loading on the mechanical properties of the PP nanocomposites was investigated in order to obtain the optimum composite composition and processing conditions for manufacturing wind turbine blades. The results show that adding MWCNTs to glass fiber-reinforced PP composites has a substantial influence on deflection reduction and adding them to chopped-polypropylene E-glass has a significant effect on reducing the bias estimated by finite element analysis.


Sign in / Sign up

Export Citation Format

Share Document