Layup Analyzing of a Carbon/Glass Hybrid Composite Wind Turbine Blade Using Finite Element Analysis

2011 ◽  
Vol 87 ◽  
pp. 49-54 ◽  
Author(s):  
Hai Chen Lin

This thesis use AOC15/50 blade as baseline model which is a composite wind turbine blade made of glass/epoxy for a horizontal axis wind turbine. A finite element modeling of composite wind turbine blade was created using the SHELL element of ANSYS. Then we study how to use the carbon fiber material replaces the glass fiber to make the hybrid blade, and find a suitable layup to improve the performance of the blade. The hybrid blade was made through introducing carbon fibers. Different models, with introducing different number of carbon fibers, 75% carbon fibers replace unidirectional glass fibers in spar cap of blade model which can achieve best structure performance. The wind turbine blades are often fabricated by hand using multiple of glass fiber-reinforced polyester resin or glass fiber-reinforced epoxy resin. As commercial machines get bigger, this could not to meet the demands. The advantages of carbon fiber composite materials are used by blade producer. Studies show that carbon fiber has high strength-to-weight ratio and resistance fatigue properties. Carbon fiber is mixed with epoxy resin to make into carbon fiber-reinforced polymer. Carbon fiber-reinforced polymer is the one of best blade materials for resistance bad weather. The stiffness of carbon fiber composite is 2 or 3 times higher than glass fiber composite [1], but the cost of carbon fiber composite is 10 times higher than glass fiber composite. If all of wind turbine blades are made of carbon fiber composite, it will be very expensive. Therefore carbon/glass fiber hybrid composite blade has become a research emphasis in the field of blade materials. This paper gives an example of finite element modeling composite wind turbine blade in ANSYS by means of the medium-length blade of AOC 15/50 horizontal axis wind turbine. This model can be directly used in dynamics analysis and does not need to be imported from the CAD software into finite element program. This finite element modeling of composite wind turbine blade was created using the SHELL element of ANSYS. Then we study how to use the carbon fiber material replaces the glass fiber to make the hybrid blade, and find a suitable lay-up to improve the performance of the blade.

2013 ◽  
Vol 774-776 ◽  
pp. 1322-1325 ◽  
Author(s):  
Chang Liang Li ◽  
Xin Cui ◽  
Zhi Hua Wu ◽  
Jing Cheng Zeng ◽  
Su Li Xing

In this work, a method to eliminate ice on wind turbine blade by using carbon fiber composites was put forward. To prove that this idea is feasible, a carbon fiber composite panel with its ends soaked by the conductive silver paste was fabricated and surface temperature of it at three levels of voltages was measured. The surface temperature of the composite panel increased significantly and finally retained a constant, which shows that the carbon fiber composites can be used to eliminate ice when the glass fabric composite blades are covered by the carbon fiber composites.


Author(s):  
Saad Aziz ◽  
John Gale ◽  
Arya Ebrahimpour ◽  
Marco P. Schoen

The weight and the cost of a wind turbine are two important factors that make wind energy competitive with other energy sources. The weight of the rotor is typically 40–80% of the total weight of the system. Thus, lowering cost by reducing the weight of the blade is an important consideration. Another significant factor is the operational life of the machine. At present, a wind turbine’s life span is about 108 cycles or 20 years of continuous service. Innovative design solutions are needed in order to meet the criteria of improved stiffness, fatigue life, reliability, and efficiency. The directional property of an anisotropic composite material can be used to passively control wind turbine blade geometry in fluctuating wind speeds. Anisotropic materials show various levels of elastic coupling, based upon the ply angle in the layers. Structural behavior that exhibits both bending and twisting due to a pure bending load is known as twist-bend coupling. This type of behavior can be used for load reductions, particularly fatigue loads. The idea is to allow the blade to unload (reducing the speed) by allowing the wind induced bending moment to twist the blade. Increments in bending moment produce an increment in the twist that lowers the aerodynamically produced load. Higher blade stiffness can be achieved by full or partial replacement of glass fiber with carbon fiber. Carbon fibers are not used extensively on commercial wind turbine blades as they are more costly than glass fiber. The main objectives of this work are: (1) design a baseline model (made from glass fibers) of the wind turbine blade in accordance with published airfoil data; (2) conduct a finite element analysis of the blade and determine stresses, and strain within the blade; (3) develop a hybrid blade design by replacing the glass fibers with carbon fibers in the spar cap; and (4) validate the feasibility of implementing bend-twist coupling in the wind turbine blade by studying stresses, and strain behavior. By giving different orientation in the carbon fiber and changing the fiber layer, different designs are analyzed with regard to the above listed criteria.


2018 ◽  
Vol 2 (3) ◽  
Author(s):  
Marsono Marsono ◽  
Ali Ali ◽  
Alek P. Sembiring

ABSTRAKPerubahan bentuk dan dimensi sudu akan menurunkan kinerja turbin angin. Perubahan bentuk dan dimensi sudu sangat dipengaruhi oleh kekakuan dan kekuatan sudu turbin tersebut. Pada kasus di lapangan, ditemui bahwa sudu turbin angin sumbu vertikal yang dibuat dengan bahan komposit serat karbon ternyata tidak memiliki kekakuan yang baik jika hanya dibuat dengan satu lapis (layer) serat karbon. Untuk mengatasi masalah kekakuan ini, maka dilakukan penambahan tulang penguat (stiffener rib) dari bahan yang sama pada sudu turbin angin. Pengujian yang telah dilakukan menunjukan bahwa penambahan tulang penguat pada sudu turbin angin sumbu vertikal telah menambah kekakuan sudu secara signifikan yang cenderung mengikuti grafik eksponensial. Kekakuan (K) sudu dengan tinggi tulang 6 mm adalah 0,0258 kg/mm. Kekakuan sudu dengan tinggi tulang 9 mm adalah 0,0740 kg/mm. Kekakuan sudu dengan tinggi tulang 12 mm adalah 0,2250 kg/mm. Di sisi lain, kekuatan lentur sudu turbin juga meningkat. Dengan penambahan tulang 6mm, kekuatan lentur maksimum (􀀀max) mencapai 4,008 kg/mm2, dengan penambahan tulang 9 mm kekuatan lentur mencapai 4,145 kg/mm2, dengan penambahan tulang 12 mm kekuatan lentur mencapai 4,544 kg/mm2.Kata kunci: sudu turbin angin sumbu vertikal, inersia penampang, kekakuan, kekuatan lentur.ABSTRACTChanges in shape and dimension of the blade will decrease the wind turbine performance. These change are strongly influenced by the stiffness and strength of turbine blade. It was found that vertical axis wind turbine blades which is made with carbon fiber composite did not have good stiffness if it was made with only one layer of carbon fiber. To overcome this stiffness problem, stiffener rib with the same material was applied on wind turbine blade. The test that has been done shows that the addition of the stifferner rib to the vertical axis wind turbine blade has significantly increased the stiffness that tends to follow the exponential graphic. The stiffness (K) of the blade with 6 mm rib height is 0.0258 kg/mm. The blade stiffness with 9 mm rib height is 0.0740 kg/mm. The blade stiffness with 12 mm rib height is 0.2250 kg/mm. On the other hand, the bending strength of the turbine blade is also increased. With the addition of 6mm rib, the maximum flexurall strength (smax) reaches 4,008 kg/mm2. With the addition of 9 mm rib, the strength reaches 4,145 kg/mm2. With the addition of 12 mm rib, the strength reaches 4,544 kg/mm2.Keywords: vertical axis wind turbine, inertia, stiffness, flexurall strength.


2011 ◽  
Vol 418-420 ◽  
pp. 606-609 ◽  
Author(s):  
Tian De ◽  
Guang Hua Chen ◽  
Jian Mei Zhang

Abstract: Base on finite element method of composite, take 5MW horizontal axis wind turbine blades as example, skin uses a mixture of fiberglass and carbon fiber as ply, spar caps and web adopt carbon fiber ply entirely to build the finite element model of the blade. The total weigh of the blade is 20.2 ton. Use Bladed software calculated the limit load of each cross-section, analyzed the stress distribution of each section and the modal characteristics of the blade, these provide a theoretical reference for the application of carbon fiber using on MW class wind turbine blade.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1017
Author(s):  
Mostafa Katouzian ◽  
Sorin Vlase ◽  
Maria Luminita Scutaru

Usually, a polymer composite with a viscoelastic response matrix has a creep behavior. To predict this phenomenon, a good knowledge of the properties and mechanical constants of the material becomes important. Schapery’s equation represents a basic relation to study the nonlinear viscoelastic creep behavior of composite reinforced with carbon fiber (matrix made by polyethrtethrtketone (PEEK) and epoxy resin). The finite element method (FEM) is a classic, well known and powerful tool to determine the overall engineering constants. The method is applied to a fiber one-directional composite for two different applications: carbon fibers T800 reinforcing an epoxy matrix Fibredux 6376C and carbon fibers of the type IM6 reinforcing a thermoplastic material APC2. More cases have been considered. The experimental results provide a validation of the proposed method and a good agreement between theoretical and experimental results.


Sign in / Sign up

Export Citation Format

Share Document