De novo monosomy 9p24.3-pter and trisomy 17q24.3-qter characterised by microarray comparative genomic hybridisation in a fetus with an increased nuchal translucency

2006 ◽  
Vol 26 (3) ◽  
pp. 206-213 ◽  
Author(s):  
Sophie Brisset ◽  
Serdar Kasakyan ◽  
Aurore Coulomb L'Herminé ◽  
Valérie Mairovitz ◽  
Evelyne Gautier ◽  
...  
2020 ◽  
pp. jmedgenet-2020-107087
Author(s):  
Zerin Hyder ◽  
Adele Fairclough ◽  
Mike Groom ◽  
Joan Getty ◽  
Elizabeth Alexander ◽  
...  

BackgroundNephroblastomatosis is a recognised precursor for the development of Wilms tumour (WT), the most common childhood renal tumour. While the majority of WT is sporadic in origin, germline intragenic mutations of predisposition genes such as WT1, REST and TRIM28 have been described in apparently isolated (non-familial) WT.Despite constitutional CNVs being a well-studied cause of developmental disorders, their role in cancer predisposition is less well defined, so that the interpretation of cancer risks associated with specific CNVs can be complex.ObjectiveTo highlight the role of a constitutional deletion CNV (delCNV) encompassing the REST tumour suppressor gene in diffuse hyperplastic perilobar nephroblastomatosis (HPLN).Methods/resultsArray comparative genomic hybridisation in an infant presenting with apparently sporadic diffuse HPLN revealed a de novo germline CNV, arr[GRCh37] 4q12(57,385,330–57,947,405)x1. The REST tumour suppressor gene is located at GRCh37 chr4:57,774,042–57,802,010.ConclusionThis delCNV encompassing REST is associated with nephroblastomatosis. Deletion studies should be included in the molecular work-up of inherited predisposition to WT/nephroblastomatosis. Detection of delCNVs involving known cancer predisposition genes can yield insights into the relationship between underlying genomic architecture and associated tumour risk.


2016 ◽  
Vol 1 (1) ◽  
Author(s):  
James D Weisfeld-Adams ◽  
Amanda K Tkachuk ◽  
Kenneth N Maclean ◽  
Naomi L Meeks ◽  
Stuart A Scott

Abstract Down syndrome (DS) is the most common genetic cause of intellectual disability (ID) and in the majority of cases is the result of complete trisomy 21. The hypothesis that the characteristic DS clinical features are due to a single DS critical region (DSCR) at distal chromosome 21q has been refuted by recently reported segmental trisomy 21 cases characterised by microarray-based comparative genomic hybridisation (aCGH). These rare cases have implicated multiple regions on chromosome 21 in the aetiology of distinct features of DS; however, the map of chromosome 21 copy-number aberrations and their associated phenotypes remains incompletely defined. We report a child with ID who was deemed very high risk for DS on antenatal screening (1 in 13) and has partial, but distinct, dysmorphologic features of DS without congenital heart disease (CHD). Oligonucleotide aCGH testing of the proband detected a previously unreported de novo 2.78-Mb duplication on chromosome 21q22.11 that includes 16 genes; however, this aberration does not harbour any of the historical DSCR genes (APP, DSCR1, DYRK1A and DSCAM). This informative case implicates previously under-recognised candidate genes (SOD1, SYNJ1 and ITSN1) in the pathogenesis of specific DS clinical features and supports a critical region for CHD located more distal on chromosome 21q. In addition, this unique case illustrates how the increasing resolution of microarray and high-throughput sequencing technologies can continue to reveal new biology and enhance understanding of widely studied genetic diseases that were originally described over 50 years ago.


Medicine ◽  
2020 ◽  
Vol 99 (40) ◽  
pp. e22496
Author(s):  
Meiling Sun ◽  
Fagui Yue ◽  
Yang Yu ◽  
Leilei Li ◽  
Yuting Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document