Prediction of Residual Stresses in Injection‐Molded Plates Using the Residual Temperature Field Concept

2019 ◽  
Vol 59 (11) ◽  
pp. 2220-2230
Author(s):  
Marcelo Estrella‐Guayasamin ◽  
Ulises Figueroa‐López ◽  
Andrea Guevara‐Morales
2001 ◽  
Vol 2 (4) ◽  
pp. 203-211 ◽  
Author(s):  
Young Il Kwon ◽  
Tae Jin Kang ◽  
Kwansoo Chung ◽  
Jae Ryoun Youn

2012 ◽  
Vol 629 ◽  
pp. 55-59
Author(s):  
Ai Yun Jiang ◽  
Jing Chao Zou ◽  
Bao Feng Zhang ◽  
Hai Hong Wu

For conductive-carbon-fiber-filled polymer composites, the residual stresses developed during injection molding process may affect not only the molding’s conductive property, but its dimensional stability as well. In order to improve the conductivity of the molding fabricated with this kind of composites, we investigated, using layer removal method, the distribution of the residual stresses of injection-molded conductive-carbon-fiber-filled polypropylene in this paper. The residual stresses were obtained under the actions of different processing conditions. Our results indicate that processing pressures have more significant effects on the residual stresses at the skin areas than the core areas of the sample because of fiber orientation. The tensile stresses of the molding at the core areas drop under the action of packing pressure, but the compressive stresses at the skin areas increase. The results reveal that the action of packing pressure may decrease the anisotropy of the residual stresses in the molding.


2011 ◽  
Vol 216 ◽  
pp. 218-222 ◽  
Author(s):  
Wen Li Wang ◽  
Wei Lian Qu ◽  
Jie He

The dynamic stress-strain and welding residual stress during welding are the significant factors which lead to welded cracking and debasement of the joint properties. Therefore, the welding residual stresses are still very importang problems.A large number of guyed mast accidents study shows that the welded joints of earplate and shaft were easily to be destroyed. Therefore, the accurate assessment of the guyed maste earplate joint substructure’s welding residual stress is of great significance. The theory and method of simulation of the welding temperature field and welding stress field by finite element method is first introduced, and then the earplate substructure refine model is established which was up to the welding numerical simulation. Based on ANSYS software’s APDL language to apply the welding heat source load, we can get and save the welding temperature field results at each time. Conversing the thermal analysis element into structure element to finish the caculation of the welding stress field. Eventually by adopting the elimination remnant technology to remove the part of welding residual stresses, we can got the final welding residual stress in different relieving proportion.


2009 ◽  
Vol 73 (10) ◽  
pp. 1355-1359 ◽  
Author(s):  
V. M. Krymov ◽  
A. V. Denisov ◽  
M. I. Sallum ◽  
S. I. Bakholdin ◽  
V. M. Mamedov ◽  
...  

e-Polymers ◽  
2008 ◽  
Vol 8 (1) ◽  
Author(s):  
Mirigul Altan ◽  
Mehmet Emin Yurci ◽  
Nihan Nugay

AbstractAn experimental study of residual thermal stresses has been carried out in injection molded virgin and recycled high density polyethylene (HDPE) blends. Effects of blend concentrations on residual stresses were investigated under different injection conditions such as melt temperature, mold temperature and cooling time. Layer removal technique was used for measuring residual stresses. In order to determine the relation between the residual stresses and material characteristic of HDPE blends, mechanical and morphological properties of the blends were also investigated. Elastic modulus and impact strength were important key factors for determining the blend characteristics. As a result, it was found that HDPE blends gave higher residual stresses but lower impact strength with higher elastic modulus when recycled concentration was increased. Furthermore, it was seen that shape and size of the crystallites were also effective on residual stresses. Small and spherulitic crystallite structured blends such as 30 % recycled HDPE induced reduction in residual stresses due to easier relaxation with lower elastic modulus and higher impact strength while lamellar crystallite structured blends such as 50 % recycled HDPE gave higher elastic modulus but lower impact strength with higher residual stresses.


Sign in / Sign up

Export Citation Format

Share Document