scholarly journals Synthesis of novel carvone (meth)acrylate monomers for the production of hydrophilic polymers with high terpene content

2020 ◽  
Author(s):  
Ulisse Montanari ◽  
Vincenzo Taresco ◽  
Anna Liguori ◽  
Chiara Gualandi ◽  
Steven M Howdle
2019 ◽  
Vol 21 (37) ◽  
pp. 20999-21006
Author(s):  
Zhanna Evgrafova ◽  
Bruno Voigt ◽  
Andreas H. Roos ◽  
Gerd Hause ◽  
Dariush Hinderberger ◽  
...  

Careful balance of hydrophilicity of precisely engineered polymers alters aggregation of the amyloidogenic protein Aβ1–40.


Polymer ◽  
2021 ◽  
Vol 224 ◽  
pp. 123671
Author(s):  
Gregory N. Smith ◽  
Erik Brok ◽  
Martin Schmiele ◽  
Kell Mortensen ◽  
Wim G. Bouwman ◽  
...  

2021 ◽  
Author(s):  
Jacques Lalevée ◽  
Fatima Hammoud ◽  
Mahmoud Rahal ◽  
Julien Egly ◽  
Fabrice Morlet-Savary ◽  
...  

The investigation of copper-iodide cubane derivatives as new co-initiators for the free radical polymerization (FRP) of acrylate monomers under mild irradiation conditions is described for the first time here. These...


2021 ◽  
pp. 096739112110245
Author(s):  
Amrita Sharma ◽  
PP Pande

It has been observed that acrylate monomers are very difficult to polymerize with the low cost nitroxide catalyst 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO). Therefore, costly acyclic nitroxides such as N-tert-butyl-N-(1-diethylphosphono-2,2-dimethyl)-N-oxyl, (SG1), 2,2,5-Trimethyl-4-phenyl-3-azahexane-3-nitroxide (TIPNO) and TIPNO derivatives have to be used for the polymerization of the acrylic acid derivatives. There are very few reports on the use of TEMPO-derivatives toward the polymerization of n-butyl acrylate. Generally different reducing agents viz. glucose, ascorbic acid, hydroxyacetone etc. have been used to destroy excess TEMPO during the polymerization reaction. The acrylate polymerizations fail in the presence of TEMPO due to the strong C–O bond formed between the acrylate chain end and nitroxide. To the best of our knowledge, no literature report is available on the use of TEMPO without reducing agent or high temperature initiators, toward the polymerization of n-butyl acrylate. The present study has been carried out with a view to re-examine the application of low cost nitroxide TEMPO, so that it can be utilized towards the polymerization of acrylate monomers (e.g. n-butyl acrylate). We have been able to polymerize n-butyl acrylate using the nitroxide TEMPO as initiator (via a macroinitiator). In this synthesis, a polystyrene macroinitiator was synthesized in the first step from TEMPO, after this TEMPO end-capped styrene macroinitiator (PSt-TEMPO) is used to polymerize n-butyl acrylate monomer. The amount of macroinitiator taken was varied from 0.05% to 50% by weight of n-butyl acrylate monomer. The polymerization was carried out at 120°C by bulk polymerization method. The experimental findings showed a gradual increase in molecular weight of the polymer formed and decrease in the polydispersity index (PDI) with increase in amount of PSt-TEMPO macroinitiator taken. In all experiments conversion was more than 80%. These results indicate that the polymerization takes place through controlled polymerization process. Effect of different solvents on polymerization has also been investigated. In the following experiments TEMPO capped styrene has been used as macroinitiator leading to the successful synthesis of poly n-Butyl acrylate. It has been found that styrene macroinitiator is highly efficient for the nitroxide mediated polymerization, even in very small concentration for the synthesis of poly n-butyl acrylate. High concentration of macroinitiator results in the formation of block copolymers of polystyrene and poly ( n-butyl acrylate) viz. polystyrene-block-poly-( n-butyl acrylate). The use of TEMPO toward controlled polymerization is of much importance, because it is the nitroxide commercially available at the lowest cost.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 878
Author(s):  
Krystyna Wnuczek ◽  
Andrzej Puszka ◽  
Łukasz Klapiszewski ◽  
Beata Podkościelna

This study presents the preparation and the thermo-mechanical characteristics of polymeric blends based on di(meth)acrylates monomers. Bisphenol A glycerolate diacrylate (BPA.GDA) or ethylene glycol dimethacrylate (EGDMA) were used as crosslinking monomers. Methyl methacrylate (MMA) was used as an active solvent in both copolymerization approaches. Commercial polycarbonate (PC) was used as a modifying soluble additive. The preparation of blends and method of polymerization by using UV initiator (Irqacure® 651) was proposed. Two parallel sets of MMA-based materials were obtained. The first included more harmless linear hydrocarbons (EGDMA + MMA), whereas the second included the usually used aromatic copolymers (BPA.GDA + MMA). The influence of different amounts of PC on the physicochemical properties was discussed in detail. Chemical structures of the copolymers were confirmed by attenuated total reflection–Fourier transform infrared (ATR/FT-IR) spectroscopy. Thermo-mechanical properties of the synthesized materials were investigated by means of differential scanning calorimetry (DSC), thermogravimetric (TG/DTG) analyses, and dynamic mechanical analysis (DMA). The hardness of the obtained materials was also tested. In order to evaluate the surface of the materials, their images were obtained with the use of atomic force microscopy (AFM).


Sign in / Sign up

Export Citation Format

Share Document