Ion exchange resins from phenol/formaldehyde resin-modified lignin

2001 ◽  
Vol 50 (3) ◽  
pp. 277-283 ◽  
Author(s):  
L Zoumpoulakis ◽  
J Simitzis
2019 ◽  
Vol 23 (4) ◽  
pp. 20-24
Author(s):  
M.S. Palamarchuk ◽  
E.A. Tokar ◽  
M.V. Tutov ◽  
A.M. Yegorin

Simulation of iron oxide (magnetite and maghemite) and aluminosilicate (sillimanite and cyanite) deposits formed on the surface of spent ionexchange resins in the process of decontamination of liquid radioactive waste contaminated by cesium and cobalt radionuclides has been performed. A method of deep deactivation of spent ion-exchange resins contaminated by aluminosilicate and iron oxide deposits using alkaline and acidic solutions containing Zn-EDTA complexes has been suggested. The method of two-stage concentrating of cesium radionuclides using selective sorption materials (resorcinol-formaldehyde resin and Thermoxid-35 ferrocyanide sorbent) has been improved. The method advantage consists in using a solution containing EDTA complexes for elution of cesium radionuclides from the resorcinol-formaldehyde resin with their transition onto Thermoxid-35. High stability of the resorcinol-formaldehyde resin and Thermoxid-35 in the course of concentrating has been demonstrated. A scheme of deactivation of spent ion-exchange resins, which enables one to decrease the volume of secondary wastes due to utilization of a circulating water supply, has been suggested.


1952 ◽  
Vol 55 (9) ◽  
pp. 625-627
Author(s):  
Tsutomu Kuwata ◽  
Akira Misono ◽  
Sadao Yoshikawa ◽  
Yoshihiro Osawa

Author(s):  
Ann M. Thomas ◽  
Virginia Shemeley

Those samples which swell rapidly when exposed to water are, at best, difficult to section for transmission electron microscopy. Some materials literally burst out of the embedding block with the first pass by the knife, and even the most rapid cutting cycle produces sections of limited value. Many ion exchange resins swell in water; some undergo irreversible structural changes when dried. We developed our embedding procedure to handle this type of sample, but it should be applicable to many materials that present similar sectioning difficulties.The purpose of our embedding procedure is to build up a cross-linking network throughout the sample, while it is in a water swollen state. Our procedure was suggested to us by the work of Rosenberg, where he mentioned the formation of a tridimensional structure by the polymerization of the GMA biproduct, triglycol dimethacrylate.


Author(s):  
Kathpalia Harsha ◽  
Das Sukanya

Ion Exchange Resins (IER) are insoluble polymers having styrene divinylbenzene copolymer backbone that contain acidic or basic functional groups and have the ability to exchange counter ions with the surrounding aqueous solutions. From the past many years they have been widely used for purification and softening of water and in chromatographic columns, however recently their use in pharmaceutical industry has gained considerable importance. Due to the physical stability and inert nature of the resins, they can be used as a versatile vehicle to design several modified release dosage forms The ionizable drug is complexed with the resin owing to the property of ion exchange. This resin complex dissociatesin vivo to release the drug. Based on the dissociation strength of the drug from the drug resin complex, various release patterns can be achieved. Many formulation glitches can be circumvented using ion exchange resins such as bitter taste and deliquescence. These resins also aid in enhancing disintegrationand stability of formulation. This review focuses on different types of ion exchange resins, their preparation methods, chemistry, properties, incompatibilities and their application in various oral drug delivery systems as well as highlighting their use as therapeutic agents.


2004 ◽  
Vol 3 (3) ◽  
pp. 447-455
Author(s):  
Viky Dicu ◽  
Carmen Iesan ◽  
Mihai Chirica ◽  
Satish Bapat

Sign in / Sign up

Export Citation Format

Share Document