Proteomic and transcriptional characterization of aromatic degradation pathways in Rhodoccocus sp. strain TFB

PROTEOMICS ◽  
2006 ◽  
Vol 6 (S1) ◽  
pp. S119-S132 ◽  
Author(s):  
Laura Tomás-Gallardo ◽  
Inés Canosa ◽  
Eduardo Santero ◽  
Emilio Camafeita ◽  
Enrique Calvo ◽  
...  
PLoS ONE ◽  
2016 ◽  
Vol 11 (6) ◽  
pp. e0157201
Author(s):  
Sang-Yeop Lee ◽  
Gun-Hwa Kim ◽  
Sung Ho Yun ◽  
Chi-Won Choi ◽  
Yoon-Sun Yi ◽  
...  

PLoS ONE ◽  
2016 ◽  
Vol 11 (4) ◽  
pp. e0154233 ◽  
Author(s):  
Sang-Yeop Lee ◽  
Gun-Hwa Kim ◽  
Sung Ho Yun ◽  
Chi-Won Choi ◽  
Yoon-Sun Yi ◽  
...  

2021 ◽  
Vol 87 (8) ◽  
Author(s):  
Jose M. Perez ◽  
Wayne S. Kontur ◽  
Carson Gehl ◽  
Derek M. Gille ◽  
Yanjun Ma ◽  
...  

ABSTRACT Lignin is a plant heteropolymer composed of phenolic subunits. Because of its heterogeneity and recalcitrance, the development of efficient methods for its valorization still remains an open challenge. One approach to utilize lignin is its chemical deconstruction into mixtures of monomeric phenolic compounds, followed by biological funneling into a single product. Novosphingobium aromaticivorans DSM 12444 has been previously engineered to produce 2-pyrone-4,6-dicarboxylic acid (PDC) from depolymerized lignin by simultaneously metabolizing multiple aromatics through convergent routes involving the intermediates 3-methoxygallic acid (3-MGA) and protocatechuic acid (PCA). We investigated enzymes predicted to be responsible for O-demethylation and oxidative aromatic ring opening, two critical reactions involved in the metabolism of phenolic compounds by N. aromaticivorans. The results showed the involvement of DesA in O-demethylation of syringic and vanillic acids, LigM in O-demethylation of vanillic acid and 3-MGA, and a new O-demethylase, DmtS, in the conversion of 3-MGA into gallic acid (GA). In addition, we found that LigAB was the main aromatic ring-opening dioxygenase involved in 3-MGA, PCA, and GA metabolism and that a previously uncharacterized dioxygenase, LigAB2, had high activity with GA. Our results indicate a metabolic route not previously identified in N. aromaticivorans that involves O-demethylation of 3-MGA to GA. We predict that this pathway channels ∼15% of the carbon flow from syringic acid, with the rest following ring opening of 3-MGA. The new knowledge obtained in this study allowed for the creation of an improved engineered strain for the funneling of aromatic compounds that exhibits stoichiometric conversion of syringic acid into PDC. IMPORTANCE For lignocellulosic biorefineries to effectively contribute to reduction of fossil fuel use, they need to become efficient at producing chemicals from all major components of plant biomass. Making products from lignin will require engineering microorganisms to funnel multiple phenolic compounds to the chemicals of interest, and N. aromaticivorans is a promising chassis for this technology. The ability of N. aromaticivorans to efficiently and simultaneously degrade many phenolic compounds may be linked to having functionally redundant aromatic degradation pathways and enzymes with broad substrate specificity. A detailed knowledge of aromatic degradation pathways is thus essential to identify genetic engineering targets to maximize product yields. Furthermore, knowledge of enzyme substrate specificity is critical to redirect flow of carbon to desired pathways. This study described an uncharacterized pathway in N. aromaticivorans and the enzymes that participate in this pathway, allowing the engineering of an improved strain for production of PDC from lignin.


2021 ◽  
Author(s):  
Varada Khot ◽  
Jackie Zorz ◽  
Daniel A Gittins ◽  
Anirban Chakraborty ◽  
Emma Bell ◽  
...  

Discovery of microbial hydrocarbon degradation pathways has traditionally relied on laboratory isolation and characterization of microorganisms. Although many metabolic pathways for hydrocarbon degradation have been discovered, the absence of tools dedicated to their annotation makes it difficult to identify the relevant genes and predict the hydrocarbon degradation potential of microbial genomes and metagenomes. Furthermore, sequence homology between hydrocarbon degradation genes and genes with other functions often results in misannotation. A tool that systematically identifies hydrocarbon metabolic potential is therefore needed. We present the Calgary approach to ANnoTating HYDrocarbon degradation genes (CANT-HYD), a database containing HMMs of 37 marker genes involved in anaerobic and aerobic degradation pathways of aliphatic and aromatic hydrocarbons. Using this database, we show that hydrocarbon metabolic potential is widespread in the tree of life and identify understudied or overlooked hydrocarbon degradation potential in many phyla. We also demonstrate scalability by analyzing large metagenomic datasets for the prediction of hydrocarbon utilization in diverse environments. To the best of our knowledge, CANT-HYD is the first comprehensive tool for robust and accurate identification of marker genes associated with aerobic and anaerobic hydrocarbon degradation.


Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 896 ◽  
Author(s):  
Salma Bougarrani ◽  
Preetam K. Sharma ◽  
Jeremy W. J. Hamilton ◽  
Anukriti Singh ◽  
Moisés Canle ◽  
...  

The determination of reaction pathways and identification of products of pollutants degradation is central to photocatalytic environmental remediation. This work focuses on the photocatalytic degradation of the herbicide Imazapyr (2-(4-methyl-5-oxo-4-propan-2-yl-1H-imidazol-2-yl) pyridine-3-carboxylic acid) under UV-Vis and visible-only irradiation of aqueous suspensions of CaxMnOy-TiO2, and on the identification of the corresponding degradation pathways and reaction intermediates. CaxMnOy-TiO2 was formed by mixing CaxMnOy and TiO2 by mechanical grinding followed by annealing at 500 °C. A complete structural characterization of CaxMnOy-TiO2 was carried out. The photocatalytic activity of the hetero-nanostructures was determined using phenol and Imazapyr herbicide as model pollutants in a stirred tank reactor under UV-Vis and visible-only irradiation. Using equivalent loadings, CaxMnOy-TiO2 showed a higher rate (10.6 μM·h−1) as compared to unmodified TiO2 (7.4 μM·h−1) for Imazapyr degradation under UV-Vis irradiation. The mineralization rate was 4.07 µM·h−1 for CaxMnOy-TiO2 and 1.21 μM·h−1 for TiO2. In the CaxMnOy-TiO2 system, the concentration of intermediate products reached a maximum at 180 min of irradiation that then decreased to a half in 120 min. For unmodified TiO2, the intermediates continuously increased with irradiation time with no decrease observed in their concentration. The enhanced efficiency of the CaxMnOy-TiO2 for the complete degradation of the Imazapyr and intermediates is attributed to an increased adsorption of polar species on the surface of CaxMnOy. Based on LC-MS, photocatalytic degradation pathways for Imazapyr under UV-Vis irradiation have been proposed. Some photocatalytic degradation was obtained under visible-only irradiation for CaxMnOy-TiO2. Hydroxyl radicals were found to be main reactive oxygen species responsible for the photocatalytic degradation through radical scavenger investigations.


2015 ◽  
Vol 82 (1) ◽  
pp. 167-173 ◽  
Author(s):  
Daiana de Lima-Morales ◽  
Diego Chaves-Moreno ◽  
Melissa L. Wos-Oxley ◽  
Ruy Jáuregui ◽  
Ramiro Vilchez-Vargas ◽  
...  

ABSTRACTPseudomonas veronii1YdBTEX2, a benzene and toluene degrader, andPseudomonas veronii1YB2, a benzene degrader, have previously been shown to be key players in a benzene-contaminated site. These strains harbor unique catabolic pathways for the degradation of benzene comprising a gene cluster encoding an isopropylbenzene dioxygenase where genes encoding downstream enzymes were interrupted by stop codons. Extradiol dioxygenases were recruited from gene clusters comprising genes encoding a 2-hydroxymuconic semialdehyde dehydrogenase necessary for benzene degradation but typically absent from isopropylbenzene dioxygenase-encoding gene clusters. The benzene dihydrodiol dehydrogenase-encoding gene was not clustered with any other aromatic degradation genes, and the encoded protein was only distantly related to dehydrogenases of aromatic degradation pathways. The involvement of the different gene clusters in the degradation pathways was suggested by real-time quantitative reverse transcription PCR.


Sign in / Sign up

Export Citation Format

Share Document