A light-scattering photometer for the angular range 6–170°

1968 ◽  
Vol 6 (3) ◽  
pp. 207-212 ◽  
Author(s):  
G. Meyerhoff ◽  
U. Moritz ◽  
R. L. Darskus
2018 ◽  
Vol 12 (2) ◽  
pp. e201800258 ◽  
Author(s):  
Haoran Zhang ◽  
Zachary A. Steelman ◽  
Derek S. Ho ◽  
Kengyeh K. Chu ◽  
Adam Wax

Author(s):  
Yu Liu

The image obtained in a transmission electron microscope is the two-dimensional projection of a three-dimensional (3D) object. The 3D reconstruction of the object can be calculated from a series of projections by back-projection, but this algorithm assumes that the image is linearly related to a line integral of the object function. However, there are two kinds of contrast in electron microscopy, scattering and phase contrast, of which only the latter is linear with the optical density (OD) in the micrograph. Therefore the OD can be used as a measure of the projection only for thin specimens where phase contrast dominates the image. For thick specimens, where scattering contrast predominates, an exponential absorption law holds, and a logarithm of OD must be used. However, for large thicknesses, the simple exponential law might break down due to multiple and inelastic scattering.


Author(s):  
J.D. Geller ◽  
C.R. Herrington

The minimum magnification for which an image can be acquired is determined by the design and implementation of the electron optical column and the scanning and display electronics. It is also a function of the working distance and, possibly, the accelerating voltage. For secondary and backscattered electron images there are usually no other limiting factors. However, for x-ray maps there are further considerations. The energy-dispersive x-ray spectrometers (EDS) have a much larger solid angle of detection that for WDS. They also do not suffer from Bragg’s Law focusing effects which limit the angular range and focusing distance from the diffracting crystal. In practical terms EDS maps can be acquired at the lowest magnification of the SEM, assuming the collimator does not cutoff the x-ray signal. For WDS the focusing properties of the crystal limits the angular range of acceptance of the incident x-radiation. The range is dependent upon the 2d spacing of the crystal, with the acceptance angle increasing with 2d spacing. The natural line width of the x-ray also plays a role. For the metal layered crystals used to diffract soft x-rays, such as Be - O, the minimum magnification is approximately 100X. In the worst case, for the LEF crystal which diffracts Ti - Zn, ˜1000X is the minimum.


1996 ◽  
Vol 88 (3) ◽  
pp. 683-691 ◽  
Author(s):  
P. KAATZ ◽  
D.P. SHELTON

Sign in / Sign up

Export Citation Format

Share Document