Polymerization in nonuniform latex particles. II. Kinetics of two-phase emulsion polymerization

1990 ◽  
Vol 28 (11) ◽  
pp. 3055-3071 ◽  
Author(s):  
Chorng-Shyan Chern ◽  
Gary W. Poehlein
1985 ◽  
Vol 50 (8) ◽  
pp. 1642-1647 ◽  
Author(s):  
Štefan Baláž ◽  
Anton Kuchár ◽  
Ernest Šturdík ◽  
Michal Rosenberg ◽  
Ladislav Štibrányi ◽  
...  

The distribution kinetics of 35 2-furylethylene derivatives in two-phase system 1-octanol-water was investigated. The transport rate parameters in direction water-1-octanol (l1) and backwards (l2) are partition coefficient P = l1/l2 dependent according to equations l1 = logP - log(βP + 1) + const., l2 = -log(βP + 1) + const., const. = -5.600, β = 0.261. Importance of this finding for assesment of distribution of compounds under investigation in biosystems and also the suitability of the presented method for determination of partition coefficients are discussed.


2020 ◽  
Vol 11 (3) ◽  
pp. 648-652 ◽  
Author(s):  
Thiago Rodrigues Guimarães ◽  
Muriel Lansalot ◽  
Elodie Bourgeat-Lami

We report the synthesis of magnetic latex particles decorated with double-responsive PDMAEMA segments with fast magnetic response via RAFT-assisted emulsion polymerization, highlighting this strategy as a powerful tool for magnetic carriers design.


2013 ◽  
Vol 212 ◽  
pp. 127-132 ◽  
Author(s):  
Henryk Kania

In the paper the author presents the results of tests defining the characteristics of behaviour of Sandelin steel in the high-temperature galvanizing process. The growth kinetics of hot-dip zinc coatings on the substrate of 0.05% Si steel in the temperature range of 540-580°C has been established. The structure of the coatings and their phase composition have been developed and the chemical composition of structural components of the coating has be defined. It has been determined that the coating is composed of a compact layer δ1 and an area of a two-phase mixture of δ1 and Zn. The conducted tests confirmed the presence of phase Γ1 , which does not form a continuous layer but it forms individual precipitates which are irregular in shape. The growth kinetics of the coating indicates that an increase in temperature causes a decrease in the coating thickness, which might prove that dissolving processes prevailed over the processes of diffuse coating growth.


1991 ◽  
Vol 24 (7) ◽  
pp. 1629-1640 ◽  
Author(s):  
Ian A. Maxwell ◽  
Bradley R. Morrison ◽  
Donald H. Napper ◽  
Robert G. Gilbert

1996 ◽  
Vol 46 (5-6) ◽  
pp. 383-398 ◽  
Author(s):  
F. Gesmundo ◽  
P. Castello ◽  
F. Viani

Sign in / Sign up

Export Citation Format

Share Document